Abstract

Overall survival of patients with newly diagnosed glioblastoma (GBM) remains dismal at 16 months with state-of-the-art treatment that includes surgical resection, radiation, and chemotherapy. GBM tumors are highly heterogeneous, and mechanisms for overcoming tumor resistance have not yet fully been elucidated. An injectable chitosan hydrogel capable of releasing chemotherapy (temozolomide [TMZ]) while retaining radioactive isotopes agents (iodine, [131I]) was used as a vehicle for localized radiation and chemotherapy, within the surgical cavity. Release from hydrogels loaded with TMZ or 131I was characterized in vitro and in vivo and their efficacy on tumor progression and survival on GBM tumors was also measured. The in vitro release of 131I was negligible over 42 days, whereas the TMZ was completely released over the first 48 h. 131I was completely retained in the tumor bed with negligible distribution in other tissues and that when delivered locally, the chemotherapy accumulated in the tumor at 10-fold higher concentrations than when delivered systemically. We found that the tumors were significantly decreased, and survival was improved in both treatment groups compared to the control group. Novel injectable chemo-radio-hydrogel implants may potentially improve the local control and overall outcome of aggressive, poor prognosis brain tumors.

Original languageEnglish
Pages (from-to)922-933
Number of pages12
JournalJournal of Pharmaceutical Sciences
Volume107
Issue number3
DOIs
StatePublished - Mar 1 2018

Keywords

  • glioblastoma
  • hydrogels
  • injectable
  • localized chemotherapy
  • localized radiotherapy

Fingerprint

Dive into the research topics of 'Injectable Hydrogels for Localized Chemotherapy and Radiotherapy in Brain Tumors'. Together they form a unique fingerprint.

Cite this