TY - JOUR
T1 - Initial assessment of 3D magnetic resonance fingerprinting (MRF) towards quantitative brain imaging for radiation therapy
AU - Lu, Lan
AU - Chen, Yong
AU - Shen, Colette
AU - Lian, Jun
AU - Das, Shiva
AU - Marks, Lawrence
AU - Lin, Weili
AU - Zhu, Tong
N1 - Publisher Copyright:
© 2019 American Association of Physicists in Medicine
PY - 2020/3/1
Y1 - 2020/3/1
N2 - Purpose: Magnetic resonance fingerprinting (MRF) provides quantitative T1/T2 maps, enabling applications in clinical radiotherapy such as large-scale, multi-center clinical trials for longitudinal assessment of therapy response. We evaluated the feasibility of a quantitative three-dimensional-MRF (3D-MRF) towards its radiotherapy applications of primary brain tumors. Methods: A fast whole-brain 3D-MRF sequence initially developed for diagnostic radiology was optimized using flexible body coils, which is the typical MR imaging setup for radiotherapy treatment planning and for MR imaging (MRI)-guided treatment delivery. Optimization criteria included the accuracy and the precision of T1/T2 quantifications of polyvinylpyrrolidone (PVP) solutions, compared to those from the 3D-MRF using a 32-channel head coil. The accuracy of T1/T2 quantifications from the optimized MRF was first examined in healthy volunteers with two different coil setups. The intra- and inter-scanner variations of image intensity from the optimized sequence were quantified by longitudinal scans of the PVP solutions on two 3T scanners. Using a 3D-printed MRI geometry phantom, susceptibility-induced distortion with the optimized 3D-MRF was quantified as the Dice coefficient of phantom contours, compared to those from CT images. By introducing intentional head motion during 10% of the scan, the robustness of the optimized 3D-MRF towards motion was evaluated through visual inspection of motion artifacts and through quantitative analysis of image sharpness in brain MRF maps. Results: The optimized sequence acquired whole-brain T1, T2 and proton density maps and with a resolution of 1.2 × 1.2 × 3 mm3 in 10 min, similar to the total acquisition time of 3D T1- and T2-weighted images of the same resolution. In vivo T1 and T2 values of the white and gray matter were consistent with literature. The intra- and inter-scanner variability of the intensity-normalized MRF T1 was 1.0% ± 0.7% and 2.3% ± 1.0% respectively, in contrast to 5.3% ± 3.8% and 3.2% ± 1.6% from the normalized T1-weighted MRI. Repeatability and reproducibility of MRF T1 were independent of intensity normalization. Both phantom and human data demonstrated that the optimized 3D-MRF is more robust to subject motion and artifacts from subject-specific susceptibility difference. Compared to CT contours, the Dice coefficient of phantom contours from 3D-MRF was 0.93, improved from 0.87 from the T1-weighted MRI. Conclusion: Compared to conventional MRI, the optimized 3D-MRF demonstrated improved repeatability across time points and reproducibility across scanners for better tissue quantification, as well as improved robustness to subject-specific susceptibility and motion artifacts under a typical MR imaging setup for radiotherapy. More importantly, quantitative MRF T1/T2 measurements lead to promising potentials towards longitudinal quantitative assessment of treatment response for better adaptive therapy and for large-scale, multi-center clinical trials.
AB - Purpose: Magnetic resonance fingerprinting (MRF) provides quantitative T1/T2 maps, enabling applications in clinical radiotherapy such as large-scale, multi-center clinical trials for longitudinal assessment of therapy response. We evaluated the feasibility of a quantitative three-dimensional-MRF (3D-MRF) towards its radiotherapy applications of primary brain tumors. Methods: A fast whole-brain 3D-MRF sequence initially developed for diagnostic radiology was optimized using flexible body coils, which is the typical MR imaging setup for radiotherapy treatment planning and for MR imaging (MRI)-guided treatment delivery. Optimization criteria included the accuracy and the precision of T1/T2 quantifications of polyvinylpyrrolidone (PVP) solutions, compared to those from the 3D-MRF using a 32-channel head coil. The accuracy of T1/T2 quantifications from the optimized MRF was first examined in healthy volunteers with two different coil setups. The intra- and inter-scanner variations of image intensity from the optimized sequence were quantified by longitudinal scans of the PVP solutions on two 3T scanners. Using a 3D-printed MRI geometry phantom, susceptibility-induced distortion with the optimized 3D-MRF was quantified as the Dice coefficient of phantom contours, compared to those from CT images. By introducing intentional head motion during 10% of the scan, the robustness of the optimized 3D-MRF towards motion was evaluated through visual inspection of motion artifacts and through quantitative analysis of image sharpness in brain MRF maps. Results: The optimized sequence acquired whole-brain T1, T2 and proton density maps and with a resolution of 1.2 × 1.2 × 3 mm3 in 10 min, similar to the total acquisition time of 3D T1- and T2-weighted images of the same resolution. In vivo T1 and T2 values of the white and gray matter were consistent with literature. The intra- and inter-scanner variability of the intensity-normalized MRF T1 was 1.0% ± 0.7% and 2.3% ± 1.0% respectively, in contrast to 5.3% ± 3.8% and 3.2% ± 1.6% from the normalized T1-weighted MRI. Repeatability and reproducibility of MRF T1 were independent of intensity normalization. Both phantom and human data demonstrated that the optimized 3D-MRF is more robust to subject motion and artifacts from subject-specific susceptibility difference. Compared to CT contours, the Dice coefficient of phantom contours from 3D-MRF was 0.93, improved from 0.87 from the T1-weighted MRI. Conclusion: Compared to conventional MRI, the optimized 3D-MRF demonstrated improved repeatability across time points and reproducibility across scanners for better tissue quantification, as well as improved robustness to subject-specific susceptibility and motion artifacts under a typical MR imaging setup for radiotherapy. More importantly, quantitative MRF T1/T2 measurements lead to promising potentials towards longitudinal quantitative assessment of treatment response for better adaptive therapy and for large-scale, multi-center clinical trials.
KW - 3D magnetic resonance fingerprinting (MRF)
KW - B0 field inhomogeneity
KW - geometric accuracy
KW - quantitative T1 and T2 maps
KW - quantitative brain MRI
KW - radiation therapy
KW - repeatability
KW - reproducibility
UR - http://www.scopus.com/inward/record.url?scp=85078595484&partnerID=8YFLogxK
U2 - 10.1002/mp.13967
DO - 10.1002/mp.13967
M3 - Article
C2 - 31834641
AN - SCOPUS:85078595484
SN - 0094-2405
VL - 47
SP - 1199
EP - 1214
JO - Medical physics
JF - Medical physics
IS - 3
ER -