TY - JOUR
T1 - Inhibition of large-conductance Ca2+-activated K+ channels by nanomolar concentrations of Ag+
AU - Zhou, Yu
AU - Xia, Xiaoming
AU - Lingle, Christopher J.
PY - 2010/11
Y1 - 2010/11
N2 - Silver has been widely used in various medical products because of its antibacterial properties. However, there is only limited information concerning silver-related cytotoxicity. In this study we show that Ag+ at low nanomolar concentrations (<10 nM) strongly inhibits the activity of large-conductance Ca2+-activated K+ channels (BK) (Slo1), a widely expressed and physiologically important potassium channel. The Ag + inhibition is caused by irreversible modification on cytosolically accessible parts of the BK channel. At least four intracellular cysteines are involved in this process. In addition, at least one of these key cysteines is not accessible to the bulkier thiolateactive reagent [2-(trimethylammonium) ethyl] methanethiosulfonate bromide. One of the cysteine-less constructs generated in this study shows gating properties similar to wild-type BK channel but with much lower Ag+ sensitivity, in which the Ag+ modification rate was decreased by approximately 20-fold. The results from the present study suggest a possible contribution of BK channel inhibition to the cytotoxicity of Ag+ in humans and other species.
AB - Silver has been widely used in various medical products because of its antibacterial properties. However, there is only limited information concerning silver-related cytotoxicity. In this study we show that Ag+ at low nanomolar concentrations (<10 nM) strongly inhibits the activity of large-conductance Ca2+-activated K+ channels (BK) (Slo1), a widely expressed and physiologically important potassium channel. The Ag + inhibition is caused by irreversible modification on cytosolically accessible parts of the BK channel. At least four intracellular cysteines are involved in this process. In addition, at least one of these key cysteines is not accessible to the bulkier thiolateactive reagent [2-(trimethylammonium) ethyl] methanethiosulfonate bromide. One of the cysteine-less constructs generated in this study shows gating properties similar to wild-type BK channel but with much lower Ag+ sensitivity, in which the Ag+ modification rate was decreased by approximately 20-fold. The results from the present study suggest a possible contribution of BK channel inhibition to the cytotoxicity of Ag+ in humans and other species.
UR - http://www.scopus.com/inward/record.url?scp=77958129843&partnerID=8YFLogxK
U2 - 10.1124/mol.110.066407
DO - 10.1124/mol.110.066407
M3 - Article
C2 - 20729303
AN - SCOPUS:77958129843
SN - 0026-895X
VL - 78
SP - 952
EP - 960
JO - Molecular pharmacology
JF - Molecular pharmacology
IS - 5
ER -