TY - JOUR
T1 - Inhibition of bradykinin-induced increases of cytosolic Ca++ by a novel amiloride analog
AU - Coyne, D. W.
AU - Mordhorst, M.
AU - Cragoe, E. J.
AU - Morrison, A. R.
PY - 1989
Y1 - 1989
N2 - The present study was undertaken to determine whether activation of the Na+/H+ antiport regulates the bradykinin (BK)-induced Ca++ transient in Madin-Darby canine kidney cells. An amiloride analog, 5-N-N-ethyl[2-methoxy 5-nitrobenzyl]amiloride (L651,548), led to a dose-dependent inhibition of the BK-induced Ca++ transient (K(i) = 9 μM), and this effect was eliminated in high external Na+. Zero external Na+ failed to inhibit the BK-induced Ca++ release, suggesting L651,548 is not acting through inhibition of the Na+/H+ antiport. Use of monovalent ionophores to adjust the intracellular pH demonstrated changes in peak Ca++ release by BK only over wide pH ranges. Furthermore, studies revealed L651,548 was much more potent at inhibiting pH recovery (K(i) = 55 nM) than BK-induced Ca++ release. Studies in saponin-permeabilized cells demonstrated no effect of L651,548 on inositol trisphosphate-induced Ca++ release. Whole cell [3H] BK binding studies indicated a dose-dependent inhibition by L651,548. We conclude that the Na+/H+ antiport does not play a critical role in control of BK-induced Ca++ release in Madin-Darby canine kidney cells. Also, the amiloride analog L651,548 reduces BK Ca++ release by inhibition of BK receptor binding in Madin-Darby canine kidney cells.
AB - The present study was undertaken to determine whether activation of the Na+/H+ antiport regulates the bradykinin (BK)-induced Ca++ transient in Madin-Darby canine kidney cells. An amiloride analog, 5-N-N-ethyl[2-methoxy 5-nitrobenzyl]amiloride (L651,548), led to a dose-dependent inhibition of the BK-induced Ca++ transient (K(i) = 9 μM), and this effect was eliminated in high external Na+. Zero external Na+ failed to inhibit the BK-induced Ca++ release, suggesting L651,548 is not acting through inhibition of the Na+/H+ antiport. Use of monovalent ionophores to adjust the intracellular pH demonstrated changes in peak Ca++ release by BK only over wide pH ranges. Furthermore, studies revealed L651,548 was much more potent at inhibiting pH recovery (K(i) = 55 nM) than BK-induced Ca++ release. Studies in saponin-permeabilized cells demonstrated no effect of L651,548 on inositol trisphosphate-induced Ca++ release. Whole cell [3H] BK binding studies indicated a dose-dependent inhibition by L651,548. We conclude that the Na+/H+ antiport does not play a critical role in control of BK-induced Ca++ release in Madin-Darby canine kidney cells. Also, the amiloride analog L651,548 reduces BK Ca++ release by inhibition of BK receptor binding in Madin-Darby canine kidney cells.
UR - http://www.scopus.com/inward/record.url?scp=0024462218&partnerID=8YFLogxK
M3 - Article
C2 - 2550619
AN - SCOPUS:0024462218
SN - 0022-3565
VL - 250
SP - 795
EP - 799
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 3
ER -