Infectious entry pathway mediated by the human endogenous retrovirus K envelope protein

Lindsey R. Robinson, Sean P.J. Whelan

Research output: Contribution to journalArticle

8 Scopus citations

Abstract

Endogenous retroviruses (ERVs), the majority of which exist as degraded remnants of ancient viruses, comprise approximately 8% of the human genome. The youngest human ERVs (HERVs) belong to the HERV-K(HML-2) subgroup and were endogenized within the past 1 million years. The viral envelope protein (ENV) facilitates the earliest events of endogenization (cellular attachment and entry), and here, we characterize the requirements for HERV-K ENV to mediate infectious cell entry. Cell-cell fusion assays indicate that a minimum of two events are required for fusion, proteolytic processing by furin-like proteases and exposure to acidic pH. We generated an infectious autonomously replicating recombinant vesicular stomatitis virus (VSV) in which the glycoprotein was replaced by HERV-K ENV. HERV-K ENV imparts an endocytic entry pathway that requires dynamin-mediated membrane scission and endosomal acidification but is distinct from clathrin-dependent or macropinocytic uptake pathways. The lack of impediments to the replication of the VSV core in eukaryotic cells allowed us to broadly survey the HERV-K ENV-dictated tropism. Unlike extant betaretroviral envelopes, which impart a narrow species tropism, we found that HERV-K ENV mediates broad tropism encompassing cells from multiple mammalian and nonmammalian species. We conclude that HERV-K ENV dictates an evolutionarily conserved entry pathway and that the restriction of HERV-K to primate genomes reflects downstream stages of the viral replication cycle.

Original languageEnglish
Pages (from-to)3640-3649
Number of pages10
JournalJournal of virology
Volume90
Issue number7
DOIs
StatePublished - Jan 1 2016
Externally publishedYes

Fingerprint Dive into the research topics of 'Infectious entry pathway mediated by the human endogenous retrovirus K envelope protein'. Together they form a unique fingerprint.

  • Cite this