Infection and chronic disease activate a systemic brain-muscle signaling axis

Shuo Yang, Meijie Tian, Yulong Dai, Rong Wang, Shigehiro Yamada, Shengyong Feng, Yunyun Wang, Deepak Chhangani, Tiffany Ou, Wenle Li, Xuan Guo, Jennifer McAdow, Diego E. Rincon-Limas, Xin Yin, Wanbo Tai, Gong Cheng, Aaron Johnson

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Infections and neurodegenerative diseases induce neuroinflammation, but affected individuals often show nonneural symptoms including muscle pain and muscle fatigue. The molecular pathways by which neuroinflammation causes pathologies outside the central nervous system (CNS) are poorly understood. We developed multiple models to investigate the impact of CNS stressors on motor function and found that Escherichia coli infections and SARS-CoV-2 protein expression caused reactive oxygen species (ROS) to accumulate in the brain. ROS induced expression of the cytokine Unpaired 3 (Upd3) in Drosophila and its ortholog, IL-6, in mice. CNS-derived Upd3/IL-6 activated the JAK-STAT pathway in skeletal muscle, which caused muscle mitochondrial dysfunction and impaired motor function. We observed similar phenotypes after expressing toxic amyloid-β (Aβ42) in the CNS. Infection and chronic disease therefore activate a systemic brain-muscle signaling axis in which CNS-derived cytokines bypass the connectome and directly regulate muscle physiology, highlighting IL-6 as a therapeutic target to treat disease-associated muscle dysfunction.

Original languageEnglish
Article numbereadm7908
JournalScience immunology
Volume9
Issue number97
DOIs
StatePublished - 2024

Fingerprint

Dive into the research topics of 'Infection and chronic disease activate a systemic brain-muscle signaling axis'. Together they form a unique fingerprint.

Cite this