TY - JOUR
T1 - Infant HIV testing at birth using point-ofcare and conventional HIV DNA PCR
T2 - An implementation feasibility pilot study in Kenya
AU - Sandbulte, Matthew R.
AU - Gautney, Brad J.
AU - Maloba, May
AU - Wexler, Catherine
AU - Brown, Melinda
AU - Mabachi, Natabhona
AU - Goggin, Kathy
AU - Lwembe, Raphael
AU - Nazir, Niaman
AU - Odeny, Thomas A.
AU - Finocchario-Kessler, Sarah
N1 - Funding Information:
The research reported in this publication is supported by grant numbers R01HD076673 and R01HD076673S2, funded by Eunice Kennedy Shriver National Institute of Child Health & Human Development. The funding agency has no role in the study design and will have no role in the execution of the study, analyses and interpretation of data, or decision to submit results for publication.
Publisher Copyright:
© The Author(s).
PY - 2019/1/5
Y1 - 2019/1/5
N2 - Background: Infant HIV diagnosis by HIV DNA polymerase chain reaction (PCR) testing at the standard 6 weeks of age is often late to mitigate the mortality peak that occurs in HIV positive infants' first 2-3 months of life. Kenya recently revised their early infant diagnosis (EID) guidelines to include HIV DNA PCR testing at birth (pilot only), 6 weeks, 6 months, and 12 months postnatal and a final 18-month antibody test. The World Health Organization (WHO) approved point-of-care (POC) diagnostic platforms for infant HIV testing in resource-limited countries that could simplify logistics and expedite infant diagnosis. Sustainable scale-up and optimal utility in Kenya and other high-prevalence countries depend on robust implementation studies in diverse clinical settings. Methods: We will pilot the implementation of birth testing by HIV DNA PCR, as well as two POC testing systems (Xpert HIV-1 Qual [Xpert] and Alere q HIV-1/2 Detect [Alere q]), on specimens collected from Kenyan infants at birth (0 to 2 weeks) and 6 weeks (4 to < 24 weeks) postnatal. The formative phase will inform optimal implementation of birth testing and two POC testing technologies. Qualitative interviews with stakeholders (providers, parents of HIVexposed infants, and community members) will assess attitudes, barriers, and recommendations to optimize implementation at their respective sites. A non-blinded pilot study at four Kenyan hospitals (n = 2 Xpert, n = 2 Alere q platforms) will evaluate infant HIV POC testing compared with standard of care HIV DNA PCR testing in both the birth and 6-week windows. Objectives of the pilot are to assess uptake, efficiency, quality, implementation variables, user experiences of birth testing with both POC testing systems or with HIV DNA PCR, and costs. Discussion: This study will generate data on the clinical impact and feasibility of adding HIV testing at birth utilizing POC and traditional PCR HIV testing strategies in resource-limited settings. Data from this pilot will inform the optimal implementation of Kenya's birth testing guidelines and of POC testing systems for the improvement of EID outcomes.
AB - Background: Infant HIV diagnosis by HIV DNA polymerase chain reaction (PCR) testing at the standard 6 weeks of age is often late to mitigate the mortality peak that occurs in HIV positive infants' first 2-3 months of life. Kenya recently revised their early infant diagnosis (EID) guidelines to include HIV DNA PCR testing at birth (pilot only), 6 weeks, 6 months, and 12 months postnatal and a final 18-month antibody test. The World Health Organization (WHO) approved point-of-care (POC) diagnostic platforms for infant HIV testing in resource-limited countries that could simplify logistics and expedite infant diagnosis. Sustainable scale-up and optimal utility in Kenya and other high-prevalence countries depend on robust implementation studies in diverse clinical settings. Methods: We will pilot the implementation of birth testing by HIV DNA PCR, as well as two POC testing systems (Xpert HIV-1 Qual [Xpert] and Alere q HIV-1/2 Detect [Alere q]), on specimens collected from Kenyan infants at birth (0 to 2 weeks) and 6 weeks (4 to < 24 weeks) postnatal. The formative phase will inform optimal implementation of birth testing and two POC testing technologies. Qualitative interviews with stakeholders (providers, parents of HIVexposed infants, and community members) will assess attitudes, barriers, and recommendations to optimize implementation at their respective sites. A non-blinded pilot study at four Kenyan hospitals (n = 2 Xpert, n = 2 Alere q platforms) will evaluate infant HIV POC testing compared with standard of care HIV DNA PCR testing in both the birth and 6-week windows. Objectives of the pilot are to assess uptake, efficiency, quality, implementation variables, user experiences of birth testing with both POC testing systems or with HIV DNA PCR, and costs. Discussion: This study will generate data on the clinical impact and feasibility of adding HIV testing at birth utilizing POC and traditional PCR HIV testing strategies in resource-limited settings. Data from this pilot will inform the optimal implementation of Kenya's birth testing guidelines and of POC testing systems for the improvement of EID outcomes.
KW - Birth testing
KW - Early infant diagnosis
KW - HIV
KW - Implementation
KW - Point-of-care testing
UR - http://www.scopus.com/inward/record.url?scp=85073760485&partnerID=8YFLogxK
U2 - 10.1186/s40814-019-0402-0
DO - 10.1186/s40814-019-0402-0
M3 - Article
AN - SCOPUS:85073760485
SN - 2055-5784
VL - 5
JO - Pilot and Feasibility Studies
JF - Pilot and Feasibility Studies
IS - 1
M1 - 0402-0
ER -