Abstract
Conventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7+ cDC1 expressed IDO1 that was dependent on IRF8. Lipopolysaccharide treatment induced maturation and IDO1-dependent tolerogenic activity in isolated immature cDC1, but not isolated cDC2. However, both human and mouse cDC2 could induce IDO1 and acquire tolerogenic function when co-cultured with mature cDC1 through the action of cDC1-derived L-kynurenine. Accordingly, cDC1-specific inactivation of IDO1 in vivo exacerbated disease in experimental autoimmune encephalomyelitis. This study identifies a previously unrecognized metabolic communication in which IDO1-expressing cDC1 cells extend their immunoregulatory capacity to the cDC2 subset through their production of tryptophan metabolite L-kynurenine. This metabolic axis represents a potential therapeutic target in treating autoimmune demyelinating diseases.
Original language | English |
---|---|
Pages (from-to) | 1032-1050.e14 |
Journal | Immunity |
Volume | 55 |
Issue number | 6 |
DOIs | |
State | Published - Jun 14 2022 |
Keywords
- AhR
- IDO1
- IL-6
- RelB
- dendritic cells
- immunotolerance
- kynurenine
- metabolites
- neuroinflammation
- tryptophan metabolism