Incorporating non-linear alignment and multi-compartmental modeling for improved human optic nerve diffusion imaging

Joo won Kim, Jesper LR Andersson, Alan C. Seifert, Peng Sun, Sheng Kwei Song, Courtney Dula, Robert T. Naismith, Junqian Xu

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

In vivo human optic nerve diffusion magnetic resonance imaging (dMRI) is technically challenging with two outstanding issues not yet well addressed: (i) non-linear optic nerve movement, independent of head motion, and (ii) effect from partial-volumed cerebrospinal fluid or interstitial fluid such as in edema. In this work, we developed a non-linear optic nerve registration algorithm for improved volume alignment in axial high resolution optic nerve dMRI. During eyes-closed dMRI data acquisition, optic nerve dMRI measurements by diffusion tensor imaging (DTI) with and without free water elimination (FWE), and by diffusion basis spectrum imaging (DBSI), as well as optic nerve motion, were characterized in healthy adults at various locations along the posterior-to-anterior dimension. Optic nerve DTI results showed consistent trends in microstructural parametric measurements along the posterior-to-anterior direction of the entire intraorbital optic nerve, while the anterior portion of the intraorbital optic nerve exhibited the largest spatial displacement. Multi-compartmental dMRI modeling, such as DTI with FWE or DBSI, was less subject to spatially dependent biases in diffusivity and anisotropy measurements in the optic nerve which corresponded to similar spatial distributions of the estimated fraction of isotropic diffusion components. DBSI results derived from our clinically feasible (∼10 min) optic nerve dMRI protocol in this study are consistent with those from small animal studies, which provides the basis for evaluating the utility of multi-compartmental dMRI modeling in characterizing coexisting pathophysiology in human optic neuropathies.

Original languageEnglish
Pages (from-to)102-113
Number of pages12
JournalNeuroImage
Volume196
DOIs
StatePublished - Aug 1 2019

Keywords

  • Diffusion MRI
  • Motion correction
  • Multi-compartmental modeling
  • Non-linear registration
  • Optic nerve

Fingerprint Dive into the research topics of 'Incorporating non-linear alignment and multi-compartmental modeling for improved human optic nerve diffusion imaging'. Together they form a unique fingerprint.

Cite this