Abstract
Mutations in the AAA+ protein (ATPase associated with a variety of cellular activities) p97/VCP (valosin-containing protein) cause a dominantly inherited syndrome of inclusion body myopathy with Paget's disease of the bone and fronto-temporal dementia (IBMPFD). p97/VCP is a ubiquitously expressed protein that participates in a number of cellular processes including endoplasmic reticulum-associated degradation (ERAD). p97/VCP aids in the extraction of ubiquitinated proteins from the endoplasmic reticulum (ER) and facilitates their delivery to the proteasome. This study focusses on the effects of disease-associated p97/VCP mutations on this pathway. We show that p97/VCP containing the mostprevalent IBMPFD-associated mutation, R155H, has normal ATPase activity and hexameric structure. However, when expressed in cultured cells, both this and a second IBMPFD-associated p97/VCP mutant increase the overall level of ubiquitin-conjugated proteins and specifically impair degradation of mutant ΔF508-CFTR handled by the ERAD pathway. These effects are similar to those previously described for an ATPase deficient p97/VCP mutant and suggest that IBMPFD mutations impair p97/VCP cellular function. In a subset of cells, IBMPFD mutations also promote formation of aggregates that contain p97/VCP, ubiquitin conjugates and ER-resident proteins. Undegraded mutant ΔF508-CFTR also accumulates in these aggregates. We conclude that IBMPFD mutations in p97/VCP disrupt ERAD and that this may contribute to the pathogenesis of IBMPFD.
Original language | English |
---|---|
Pages (from-to) | 189-199 |
Number of pages | 11 |
Journal | Human molecular genetics |
Volume | 15 |
Issue number | 2 |
DOIs | |
State | Published - Jan 15 2006 |