Inactivation of Blood-Borne Enveloped Viruses with the Nonionic Detergent 2-[4-(2,4,4-Trimethylpentan-2-yl)Phenoxy]Ethanol Does Not Bias Clinical Chemistry Results

Adam L. Bailey, Christopher Farnsworth

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Background: Patients infected with virulent pathogens require the sophisticated diagnostic capabilities of a core laboratory for optimal care. This is especially true in outbreaks that strain healthcare system capacity. However, samples from such patients pose an infection risk for laboratory workers. We evaluated a strategy for mitigating this risk by preincubating specimens with 2-[4-(2,4,4-Trimethylpentan-2-yl)phenoxy]ethanol, a non-ionic detergent commonly calledTriton X-100. Methods: Lithium-heparinized plasma was mixed with the detergent Triton X-100 at 1%. Inactivation of Ebola virus (EBOV), yellow fever virus (YFV), and chikungunya virus (CHIKV) was assessed using a virus-outgrowth assay. The impact of 1% Triton X-100 dilution on the components of a complete metabolic panel (CMP) was assessed on a Roche Cobas analyzer with 15 specimens that spanned a large portion of the analytical measurement range. Results: Incubation with 1% Triton X-100 for 5 min was sufficient to completely inactivate EBOV and YFV spiked into plasma but did not completely inactivate CHIKV infectivity even after 60 min of incubation. This was true only for CHIKV when spiked into plasma; CHIKV was completely inactivated in cell culture medium. A bias of-0.78 mmol/L (95% CI,-2.41 to 0.85) was observed for CO2 and 5.79 U/L (95% CI,-0.05 to 11.63) was observed for aspartate aminotransferase after addition of Triton X-100. No other components of the CMP were affected by the addition of Triton X-100. Conclusions: Detergent-based inactivation of plasma specimens may be a viable approach to mitigating the risk that certain blood-borne pathogens pose to laboratory workers in an outbreak setting. However, the effectiveness of this method for inactivation may depend on the specimen type and pathogen in question.

Original languageEnglish
Pages (from-to)1123-1132
Number of pages10
JournalThe journal of applied laboratory medicine
Volume6
Issue number5
DOIs
StatePublished - Sep 1 2021

Keywords

  • biocontainment
  • biosafety
  • laboratory contamination

Fingerprint

Dive into the research topics of 'Inactivation of Blood-Borne Enveloped Viruses with the Nonionic Detergent 2-[4-(2,4,4-Trimethylpentan-2-yl)Phenoxy]Ethanol Does Not Bias Clinical Chemistry Results'. Together they form a unique fingerprint.

Cite this