Introduction: Palmitate, the typical end product released from fatty acid synthase, is of interest to many researchers performing metabolomics. Although palmitate can be readily detected by using mass spectrometry, many metabolomic platforms involve the use of plastic consumables that introduce a competing background signal of palmitate. Objectives: The goal of this study was to quantify palmitate contamination in metabolomics and isotope tracer studies and to examine the reliability of approaches for reducing error. Methods: We measured the quantitative error introduced by palmitate contamination from 4 vendors of plastic consumables used in combination with several different extraction solvents. Results: The background palmitate signal was as much as sixfold higher than the biological palmitate signal from 4 million 3T3-L1 cells. Importantly, the palmitate contamination signal was highly variable between plastic consumables (even within the same lot) and therefore could not be accurately removed by subtracting the background as measured from a blank. In addition to affecting relative and absolute quantitation, the palmitate background signal from disposable plastics also led to the underestimation of labeled palmitate in isotope tracer experiments. Conclusion: When measuring palmitate standard solutions, the best results were obtained when glass vials and glass pipettes were used. However, much of the palmitate background signal could be eliminated by pre-rinsing plastic vials and plastic pipette tips with methanol prior to sample introduction. For isotope tracer studies, error could also be minimized by estimating palmitate enrichment from palmitoylcarnitine, which does not have a competing contamination signal from plastic consumables.

Original languageEnglish
Article number143
Issue number9
StatePublished - Sep 1 2016


  • Isotope labeling
  • Lipidomics
  • Palmitate
  • Plastic contamination
  • Stearate


Dive into the research topics of 'Inaccurate quantitation of palmitate in metabolomics and isotope tracer studies due to plastics'. Together they form a unique fingerprint.

Cite this