TY - JOUR
T1 - In vivo measurements of kidney glomerular number and size in healthy and Os/+ mice using MRI
AU - Baldelomar, Edwin J.
AU - Charlton, Jennifer R.
AU - DeRonde, Kimberly A.
AU - Bennett, Kevin M.
N1 - Publisher Copyright:
Copyright © 2019 the American Physiological Society.
PY - 2019/10
Y1 - 2019/10
N2 - The development of chronic kidney disease (CKD) is associated with the loss of functional nephrons. However, there are no methods to directly measure nephron number in living subjects. Thus, there are no methods to track the early stages of progressive CKD before changes in total renal function. In this work, we used cationic ferritin-enhanced magnetic resonance imaging (CFE-MRI) to enable measurements of glomerular number (Nglom) and apparent glomerular volume (aVglom) in vivo in healthy wild-type (WT) mice (n = 4) and mice with oligosyndactylism (Os/+; n = 4), a model of congenital renal hypoplasia leading to nephron reduction. We validated in vivo measurements of Nglom and aVglom by highresolution ex vivo MRI. CFE-MRI measured a mean Nglom of 12,220 ± 2,028 and 6,848 ± 1,676 (means ± SD) for WT and Os/+ mouse kidneys in vivo, respectively. Nglom measured in all mice in vivo using CFE-MRI varied by an average 15% from Nglom measured ex vivo in the same kidney (α = 0.05, P = 0.67). To confirm that CFE-MRI can also be used to track nephron endowment longitudinally, a WT mouse was imaged three times by CFE-MRI over 2 wk. Values of Nglom measured in vivo in the same kidney varied within ∼3%. Values of aVglom calculated from CFE-MRI in vivo were significantly different (∼15% on average, P < 0.01) from those measured ex vivo, warranting further investigation. This is the first report of direct measurements of Nglom and aVglom in healthy and diseased mice in vivo.
AB - The development of chronic kidney disease (CKD) is associated with the loss of functional nephrons. However, there are no methods to directly measure nephron number in living subjects. Thus, there are no methods to track the early stages of progressive CKD before changes in total renal function. In this work, we used cationic ferritin-enhanced magnetic resonance imaging (CFE-MRI) to enable measurements of glomerular number (Nglom) and apparent glomerular volume (aVglom) in vivo in healthy wild-type (WT) mice (n = 4) and mice with oligosyndactylism (Os/+; n = 4), a model of congenital renal hypoplasia leading to nephron reduction. We validated in vivo measurements of Nglom and aVglom by highresolution ex vivo MRI. CFE-MRI measured a mean Nglom of 12,220 ± 2,028 and 6,848 ± 1,676 (means ± SD) for WT and Os/+ mouse kidneys in vivo, respectively. Nglom measured in all mice in vivo using CFE-MRI varied by an average 15% from Nglom measured ex vivo in the same kidney (α = 0.05, P = 0.67). To confirm that CFE-MRI can also be used to track nephron endowment longitudinally, a WT mouse was imaged three times by CFE-MRI over 2 wk. Values of Nglom measured in vivo in the same kidney varied within ∼3%. Values of aVglom calculated from CFE-MRI in vivo were significantly different (∼15% on average, P < 0.01) from those measured ex vivo, warranting further investigation. This is the first report of direct measurements of Nglom and aVglom in healthy and diseased mice in vivo.
KW - Cationic ferritin
KW - Glomerulus
KW - Magnetic resonance imaging
KW - Mouse
KW - Nephron number
KW - Oligosyndactylism
UR - http://www.scopus.com/inward/record.url?scp=85072366143&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.00078.2019
DO - 10.1152/ajprenal.00078.2019
M3 - Article
C2 - 31339774
AN - SCOPUS:85072366143
SN - 1931-857X
VL - 317
SP - F865-F873
JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
IS - 4
ER -