TY - JOUR
T1 - In vivo measurement of normal rat intracellular pyruvate and lactate levels after injection of hyperpolarized [1- 13C]alanine
AU - Hu, Simon
AU - Zhu, Minhua
AU - Yoshihara, Hikari A.I.
AU - Wilson, David M.
AU - Keshari, Kayvan R.
AU - Shin, Peter
AU - Reed, Galen
AU - von Morze, Cornelius
AU - Bok, Robert
AU - Larson, Peder E.Z.
AU - Kurhanewicz, John
AU - Vigneron, Daniel B.
PY - 2011/10
Y1 - 2011/10
N2 - Hyperpolarized technology utilizing dynamic nuclear polarization has enabled rapid and high-sensitivity measurements of 13C metabolism in vivo. The most commonly used in vivo agent for hyperpolarized 13C metabolic imaging thus far has been [1- 13C]pyruvate. In preclinical studies, not only is its uptake detected, but also its intracellular enzymatic conversion to metabolic products including [1- 13C]lactate and [1- 13C]alanine. However, the ratio of 13C-lactate/ 13C-pyruvate measured in this data does not accurately reflect cellular values since much of the [1- 13C]pyruvate is extracellular depending on timing, vascular properties, and extracellular space and monocarboxylate transporter activity. In order to measure the relative levels of intracellular pyruvate and lactate, in this project we hyperpolarized [1- 13C]alanine and monitored the in vivo conversion to [1- 13C]pyruvate and then the subsequent conversion to [1- 13C]lactate. The intracellular lactate-to-pyruvate ratio of normal rat tissue measured with hyperpolarized [1- 13C]alanine was 4.89±0.61 (mean±S.E.) as opposed to a ratio of 0.41±0.03 when hyperpolarized [1- 13C]pyruvate was injected.
AB - Hyperpolarized technology utilizing dynamic nuclear polarization has enabled rapid and high-sensitivity measurements of 13C metabolism in vivo. The most commonly used in vivo agent for hyperpolarized 13C metabolic imaging thus far has been [1- 13C]pyruvate. In preclinical studies, not only is its uptake detected, but also its intracellular enzymatic conversion to metabolic products including [1- 13C]lactate and [1- 13C]alanine. However, the ratio of 13C-lactate/ 13C-pyruvate measured in this data does not accurately reflect cellular values since much of the [1- 13C]pyruvate is extracellular depending on timing, vascular properties, and extracellular space and monocarboxylate transporter activity. In order to measure the relative levels of intracellular pyruvate and lactate, in this project we hyperpolarized [1- 13C]alanine and monitored the in vivo conversion to [1- 13C]pyruvate and then the subsequent conversion to [1- 13C]lactate. The intracellular lactate-to-pyruvate ratio of normal rat tissue measured with hyperpolarized [1- 13C]alanine was 4.89±0.61 (mean±S.E.) as opposed to a ratio of 0.41±0.03 when hyperpolarized [1- 13C]pyruvate was injected.
KW - Dynamic nuclear polarization (DNP)
KW - Hyperpolarized carbon-13
KW - Magnetic resonance spectroscopy/spectroscopic imaging
KW - Monocarboxylate transporter (MCT)
UR - http://www.scopus.com/inward/record.url?scp=80052615675&partnerID=8YFLogxK
U2 - 10.1016/j.mri.2011.07.001
DO - 10.1016/j.mri.2011.07.001
M3 - Article
C2 - 21855243
AN - SCOPUS:80052615675
SN - 0730-725X
VL - 29
SP - 1035
EP - 1040
JO - Magnetic Resonance Imaging
JF - Magnetic Resonance Imaging
IS - 8
ER -