TY - JOUR
T1 - In vitro experiments and kinetic models of Arabidopsis pollen hydration mechanics show that MSL8 is not a simple tension-gated osmoregulator
AU - Miller, Kari
AU - Strychalski, Wanda
AU - Nickaeen, Masoud
AU - Carlsson, Anders
AU - Haswell, Elizabeth S.
N1 - Publisher Copyright:
© 2022 Elsevier Inc.
PY - 2022/7/11
Y1 - 2022/7/11
N2 - Pollen, a neighbor-less cell containing the male gametes, undergoes mechanical challenges during plant sexual reproduction, including desiccation and rehydration. It was previously shown that the pollen-specific mechanosensitive ion channel MscS-like (MSL)8 is essential for pollen survival during hydration and proposed that it functions as a tension-gated osmoregulator. Here, we test this hypothesis with a combination of mathematical modeling and laboratory experiments. Time-lapse imaging revealed that wild-type pollen grains swell, and then they stabilize in volume rapidly during hydration. msl8 mutant pollen grains, however, continue to expand and eventually burst. We found that a mathematical model, wherein MSL8 acts as a simple-tension-gated osmoregulator, does not replicate this behavior. A better fit was obtained from variations of the model, wherein MSL8 inactivates independent of its membrane tension gating threshold or MSL8 strengthens the cell wall without osmotic regulation. Experimental and computational testing of several perturbations, including hydration in an osmolyte-rich solution, hyper-desiccation of the grains, and MSL8-YFP overexpression, indicated that the cell wall strengthening model best simulated experimental responses. Finally, the expression of a nonconducting MSL8 variant did not complement the msl8 overexpansion phenotype. These data indicate that contrary to our hypothesis and to the current understanding of MS ion channel function in bacteria, MSL8 does not act as a simple membrane tension-gated osmoregulator. Instead, they support a model wherein ion flux through MSL8 is required to alter pollen cell wall properties. These results demonstrate the utility of pollen as a cellular scale model system and illustrate how mathematical models can correct intuitive hypotheses.
AB - Pollen, a neighbor-less cell containing the male gametes, undergoes mechanical challenges during plant sexual reproduction, including desiccation and rehydration. It was previously shown that the pollen-specific mechanosensitive ion channel MscS-like (MSL)8 is essential for pollen survival during hydration and proposed that it functions as a tension-gated osmoregulator. Here, we test this hypothesis with a combination of mathematical modeling and laboratory experiments. Time-lapse imaging revealed that wild-type pollen grains swell, and then they stabilize in volume rapidly during hydration. msl8 mutant pollen grains, however, continue to expand and eventually burst. We found that a mathematical model, wherein MSL8 acts as a simple-tension-gated osmoregulator, does not replicate this behavior. A better fit was obtained from variations of the model, wherein MSL8 inactivates independent of its membrane tension gating threshold or MSL8 strengthens the cell wall without osmotic regulation. Experimental and computational testing of several perturbations, including hydration in an osmolyte-rich solution, hyper-desiccation of the grains, and MSL8-YFP overexpression, indicated that the cell wall strengthening model best simulated experimental responses. Finally, the expression of a nonconducting MSL8 variant did not complement the msl8 overexpansion phenotype. These data indicate that contrary to our hypothesis and to the current understanding of MS ion channel function in bacteria, MSL8 does not act as a simple membrane tension-gated osmoregulator. Instead, they support a model wherein ion flux through MSL8 is required to alter pollen cell wall properties. These results demonstrate the utility of pollen as a cellular scale model system and illustrate how mathematical models can correct intuitive hypotheses.
KW - MS channel
KW - mechanobiology
KW - modeling
KW - pollen hydration
UR - http://www.scopus.com/inward/record.url?scp=85133614068&partnerID=8YFLogxK
U2 - 10.1016/j.cub.2022.05.033
DO - 10.1016/j.cub.2022.05.033
M3 - Article
C2 - 35660140
AN - SCOPUS:85133614068
SN - 0960-9822
VL - 32
SP - 2921-2934.e3
JO - Current Biology
JF - Current Biology
IS - 13
ER -