TY - JOUR
T1 - In Silico Trial of MR-Guided Midtreatment Adaptive Planning for Hypofractionated Stereotactic Radiation Therapy in Centrally Located Thoracic Tumors
AU - Henke, Lauren E.
AU - Kashani, Rojano
AU - Hilliard, Jessica
AU - DeWees, Todd A.
AU - Curcuru, Austen
AU - Przybysz, Daniel
AU - Green, Olga
AU - Robinson, Clifford G.
AU - Bradley, Jeffrey D.
N1 - Funding Information:
This publication was supported by the Washington University Institute of Clinical and Translational Sciences grant UL1T2000448 from the National Center for Advancing Translational Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Publisher Copyright:
© 2018 Elsevier Inc.
PY - 2018/11/15
Y1 - 2018/11/15
N2 - Purpose: Hypofractionated (>5 fraction) stereotactic radiation therapy (HSRT) may allow for ablative biologically equivalent dose to tumors with a lower risk of organ-at-risk (OAR) toxicity in central thoracic tumors. Adaptive planning may further improve OAR sparing while maintaining planning target volume (PTV) coverage. We hypothesized that midtreatment adaptive replanning would offer dosimetric advantages during HSRT for central thorax malignancies using magnetic resonance imaging (MRI)–guided radiation therapy. Methods and Materials: Twelve patients with central thorax tumors received HSRT using MRI-guided radiation therapy. Clinically delivered regimens were 60 Gy in 12 fractions or 62.5 Gy in 10 fractions, with low-field magnetic resonance (0.35 T) volumetric setup imaging acquired at each fraction. Daily gross tumor volume (GTV) and OARs were retrospectively redefined on fraction 1, 6, and 10 MRIs, and GTV response was recorded. Simulated initial plans prescribed a dose of 60 Gy in 12 fractions based on fraction 1 MRI. Midtreatment adaptive plans were created based on fraction 6 anatomy-of-the-day. All plans were created using an isotoxicity approach with a goal of 95% PTV coverage, subject to hard OAR constraints, to represent clinically ideal OAR sparing. Plans were then compared for projected OAR sparing and PTV coverage. Results: Patients demonstrated significant on-treatment MRI-defined GTV reduction (median 41.8%; range 16.7%-65.7%). At fraction 6, median reduction was 26.7%. All initial plans met OAR constraints. Initial plan application to fraction 6 and fraction 10 anatomy resulted in 8 OAR violations (5 of 13 patients) and 10 OAR violations (6 of 13 patients). All fraction 6 violations persisted at fraction 10. Midpoint adaptive planning reversed 100% of midpoint OAR violations and tended to reduce the magnitude of OAR violations incurred at fraction 10. In 40% of fractions (2 of 5) in which OAR violation resulted from initial plan application to fraction 6 anatomy, PTV coverage was increased concomitant with violation reversal. Conclusions: Midtreatment adaptive planning based on tumor response may be dosimetrically advantageous for sparing of surrounding critical structures in HSRT for central thorax malignancies and could be applied using either an online or offline paradigm.
AB - Purpose: Hypofractionated (>5 fraction) stereotactic radiation therapy (HSRT) may allow for ablative biologically equivalent dose to tumors with a lower risk of organ-at-risk (OAR) toxicity in central thoracic tumors. Adaptive planning may further improve OAR sparing while maintaining planning target volume (PTV) coverage. We hypothesized that midtreatment adaptive replanning would offer dosimetric advantages during HSRT for central thorax malignancies using magnetic resonance imaging (MRI)–guided radiation therapy. Methods and Materials: Twelve patients with central thorax tumors received HSRT using MRI-guided radiation therapy. Clinically delivered regimens were 60 Gy in 12 fractions or 62.5 Gy in 10 fractions, with low-field magnetic resonance (0.35 T) volumetric setup imaging acquired at each fraction. Daily gross tumor volume (GTV) and OARs were retrospectively redefined on fraction 1, 6, and 10 MRIs, and GTV response was recorded. Simulated initial plans prescribed a dose of 60 Gy in 12 fractions based on fraction 1 MRI. Midtreatment adaptive plans were created based on fraction 6 anatomy-of-the-day. All plans were created using an isotoxicity approach with a goal of 95% PTV coverage, subject to hard OAR constraints, to represent clinically ideal OAR sparing. Plans were then compared for projected OAR sparing and PTV coverage. Results: Patients demonstrated significant on-treatment MRI-defined GTV reduction (median 41.8%; range 16.7%-65.7%). At fraction 6, median reduction was 26.7%. All initial plans met OAR constraints. Initial plan application to fraction 6 and fraction 10 anatomy resulted in 8 OAR violations (5 of 13 patients) and 10 OAR violations (6 of 13 patients). All fraction 6 violations persisted at fraction 10. Midpoint adaptive planning reversed 100% of midpoint OAR violations and tended to reduce the magnitude of OAR violations incurred at fraction 10. In 40% of fractions (2 of 5) in which OAR violation resulted from initial plan application to fraction 6 anatomy, PTV coverage was increased concomitant with violation reversal. Conclusions: Midtreatment adaptive planning based on tumor response may be dosimetrically advantageous for sparing of surrounding critical structures in HSRT for central thorax malignancies and could be applied using either an online or offline paradigm.
UR - http://www.scopus.com/inward/record.url?scp=85052965759&partnerID=8YFLogxK
U2 - 10.1016/j.ijrobp.2018.06.022
DO - 10.1016/j.ijrobp.2018.06.022
M3 - Article
C2 - 29953910
AN - SCOPUS:85052965759
SN - 0360-3016
VL - 102
SP - 987
EP - 995
JO - International Journal of Radiation Oncology Biology Physics
JF - International Journal of Radiation Oncology Biology Physics
IS - 4
ER -