Improving IMRT dose accuracy via deliverable Monte Carlo optimization for the treatment of head and neck cancer patients

Nesrin Dogan, Jeffery V. Siebers, Paul J. Keall, Fritz Lerma, Yan Wu, Mirek Fatyga, Jeffrey F. Williamson, Rupert K. Schmidt-Ullrich

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

The purpose of this work is to investigate the effect of dose-calculation accuracy on head and neck (H&N) intensity modulated radiation therapy (IMRT) plans by determining the systematic dose-prediction and optimization- convergence errors (DPEs and OCEs), using a superposition/convolution (SC) algorithm. Ten patients with locally advanced H&N squamous cell carcinoma who were treated with simultaneous integrated boost IMRT were selected for this study. The targets consisted of gross target volume (GTV), clinical target volume (CTV), and nodal target volumes (CTV nodes). The critical structures included spinal cord, parotid glands, and brainstem. For all patients, three IMRT plans were created: A: an SC optimized plan (SCopt), B: an SCopt plan recalculated with Monte Carlo [MC (SCopt)], and C: an MC optimized plan (MCopt). For each structure, DPEs and OCEs were estimated as DPESC = DB - DA and OCE SC = DC - DB where A, B, and C stand for the three different optimized plans as defined above. Deliverable optimization was used for all plans, that is, a leaf-sequencing step was incorporated into the optimization loop at each iteration. The range of DPESC in the GTV D98 varied from -1.9% to -4.9%, while the OCESC ranged from 0.9% to 7.0%. The DPESC in the contralateral parotid D 50 reached 8.2%, while the OCESC in the contralateral parotid D50 varied from 0.91% to 6.99%. The DPESC in cord D2 reached -3.0%, while the OCESC reached to -7.0%. The magnitude of the DPESC and OCESC differences demonstrate the importance of using the most accurate available algorithm in the deliverable IMRT optimization process, especially for the estimation of normal structure doses.

Original languageEnglish
Pages (from-to)4033-4043
Number of pages11
JournalMedical physics
Volume33
Issue number11
DOIs
StatePublished - 2006

Keywords

  • Dose calculation accuracy
  • Dose-prediction error
  • Intensity modulated radiotherapy (IMRT)
  • Monte Carlo
  • Optimization-convergence error

Fingerprint

Dive into the research topics of 'Improving IMRT dose accuracy via deliverable Monte Carlo optimization for the treatment of head and neck cancer patients'. Together they form a unique fingerprint.

Cite this