Improved Oxidative C-C Bond Formation Reactivity of High-Valent Pd Complexes Supported by a Pseudo-Tridentate Ligand

Jason W. Schultz, Nigam P. Rath, Liviu M. Mirica

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

There is a large interest in developing oxidative transformations catalyzed by palladium complexes that employ environmentally friendly and economical oxidizing reagents such as dioxygen. Recently, we have reported the isolation and characterization of various mononuclear PdIII and PdIV complexes supported by the tetradentate ligands N,N′-dialkyl-2,11-diaza[3.3](2,6)pyridinophane (RN4, R = tBu, iPr, Me), and the aerobically induced C-C and C-heteroatom bond formation reactivity was investigated in detail. Given that the steric and electronic properties of the multidentate ligands were shown to tune the stability and reactivity of the corresponding high-valent Pd complexes, herein we report the use of an asymmetric N4 ligand, N-mehtyl-N′-tosyl-2,11-diaza[3.3](2,6)pyridinophane (TsMeN4), in which one amine N atom contains a tosyl group. The N-Ts donor atom exhibits a markedly reduced donating ability, which led to the formation of transiently stable PdIII and PdIV complexes, and consequently the corresponding O2 oxidation reactivity and the subsequent C-C bond formation were improved significantly.

Original languageEnglish
Pages (from-to)11782-11792
Number of pages11
JournalInorganic Chemistry
Volume59
Issue number16
DOIs
StatePublished - Aug 17 2020

Fingerprint

Dive into the research topics of 'Improved Oxidative C-C Bond Formation Reactivity of High-Valent Pd Complexes Supported by a Pseudo-Tridentate Ligand'. Together they form a unique fingerprint.

Cite this