TY - JOUR
T1 - Improved determination of spin density, T1 and T2 from a three-parameter fit to multiple-delay-multiple-echo (MDME) NMR images
AU - Conturo, T. E.
AU - Price, R. R.
AU - Beth, A. H.
AU - Mitchell, M. R.
AU - Partain, C. L.
AU - James, A. E.
PY - 1986
Y1 - 1986
N2 - A method is presented for simultaneously determining values of relative hydrogen spin density Nr, T1 and T2 from a single set of NMR image intensities acquired in a short imaging time. Present methods use separate acquisitions and data sets to determine all three parameters. In the method presented, multiple-echo data are collected at multiple delays in virtually the same imaging time used to obtain T1 and a T2-weighted Nr from a separate saturation recovery (SR) T1 measurement. All three parameters are then determined by a three-parameter fit of a derived signal intensity equation to these multiple-delay-multiple-echo (MDME) data. This provides an inherent correction of Nr for T1 and T2 weighting without the use of sequences with TD>5T1, and without further data collection for a separate T2 measurement. It also provides an effective reduction in the noise of the separate T2 measurement. A three-parameter fit to MDME data appears to be superior to the separate T 1 and T2 measurements currently used to determine all three parameters. Calculations performed on CrCl3 solutions produced T1 values from 21 ms to 3.4 s, T2 values from 6 to 714 ms, and standard errors as low as 0.33%, with a net imaging time of the order of that required for routine low-noise signal intensity imaging. The method could potentially be used in NMR spectroscopy to give similar benefits.
AB - A method is presented for simultaneously determining values of relative hydrogen spin density Nr, T1 and T2 from a single set of NMR image intensities acquired in a short imaging time. Present methods use separate acquisitions and data sets to determine all three parameters. In the method presented, multiple-echo data are collected at multiple delays in virtually the same imaging time used to obtain T1 and a T2-weighted Nr from a separate saturation recovery (SR) T1 measurement. All three parameters are then determined by a three-parameter fit of a derived signal intensity equation to these multiple-delay-multiple-echo (MDME) data. This provides an inherent correction of Nr for T1 and T2 weighting without the use of sequences with TD>5T1, and without further data collection for a separate T2 measurement. It also provides an effective reduction in the noise of the separate T2 measurement. A three-parameter fit to MDME data appears to be superior to the separate T 1 and T2 measurements currently used to determine all three parameters. Calculations performed on CrCl3 solutions produced T1 values from 21 ms to 3.4 s, T2 values from 6 to 714 ms, and standard errors as low as 0.33%, with a net imaging time of the order of that required for routine low-noise signal intensity imaging. The method could potentially be used in NMR spectroscopy to give similar benefits.
UR - http://www.scopus.com/inward/record.url?scp=0023007930&partnerID=8YFLogxK
U2 - 10.1088/0031-9155/31/12/005
DO - 10.1088/0031-9155/31/12/005
M3 - Article
C2 - 3809239
AN - SCOPUS:0023007930
SN - 0031-9155
VL - 31
SP - 1361
EP - 1380
JO - Physics in Medicine and Biology
JF - Physics in Medicine and Biology
IS - 12
M1 - 005
ER -