TY - JOUR
T1 - Impaired neurogenesis with reactive astrocytosis in the hippocampus in a porcine model of acquired hydrocephalus
AU - Garcia-Bonilla, Maria
AU - Nair, Arjun
AU - Moore, Jason
AU - Castaneyra-Ruiz, Leandro
AU - Zwick, Sarah H.
AU - Dilger, Ryan N.
AU - Fleming, Stephen A.
AU - Golden, Rebecca K.
AU - Talcott, Michael R.
AU - Isaacs, Albert M.
AU - Limbrick, David D.
AU - McAllister, James P.
N1 - Funding Information:
This work was supported by NIH 5R21NS111249–02 (JPM & DDL).
Publisher Copyright:
© 2023
PY - 2023/5
Y1 - 2023/5
N2 - Background: Hydrocephalus is a neurological disease with an incidence of 0.3–0.7 per 1000 live births in the United States. Ventriculomegaly, periventricular white matter alterations, inflammation, and gliosis are among the neuropathologies associated with this disease. We hypothesized that hippocampus structure and subgranular zone neurogenesis are altered in untreated hydrocephalus and correlate with recognition memory deficits. Methods: Hydrocephalus was induced by intracisternal kaolin injections in domestic juvenile pigs (43.6 ± 9.8 days). Age-matched sham controls received similar saline injections. MRI was performed to measure ventricular volume, and/or hippocampal and perirhinal sizes at 14 ± 4 days and 36 ± 8 days post-induction. Recognition memory was assessed one week before and after kaolin induction. Histology and immunohistochemistry in the hippocampus were performed at sacrifice. Results: The hippocampal width and the perirhinal cortex thickness were decreased (p < 0.05) in hydrocephalic pigs 14 ± 4 days post-induction. At sacrifice (36 ± 8 days post-induction), significant expansion of the cerebral ventricles was detected (p = 0.005) in hydrocephalic pigs compared with sham controls. The area of the dorsal hippocampus exhibited a reduction (p = 0.035) of 23.4% in the hydrocephalic pigs at sacrifice. Likewise, in hydrocephalic pigs, the percentages of neuronal precursor cells (doublecortin+ cells) and neurons decreased (p < 0.01) by 32.35%, and 19.74%, respectively, in the subgranular zone of the dorsal hippocampus. The percentage of reactive astrocytes (vimentin+) was increased (p = 0.041) by 48.7%. In contrast, microglial cells were found to decrease (p = 0.014) by 55.74% in the dorsal hippocampus in hydrocephalic pigs. There was no difference in the recognition index, a summative measure of learning and memory, one week before and after the induction of hydrocephalus. Conclusion: In untreated juvenile pigs, acquired hydrocephalus caused morphological alterations, reduced neurogenesis, and increased reactive astrocytosis in the hippocampus and perirhinal cortex.
AB - Background: Hydrocephalus is a neurological disease with an incidence of 0.3–0.7 per 1000 live births in the United States. Ventriculomegaly, periventricular white matter alterations, inflammation, and gliosis are among the neuropathologies associated with this disease. We hypothesized that hippocampus structure and subgranular zone neurogenesis are altered in untreated hydrocephalus and correlate with recognition memory deficits. Methods: Hydrocephalus was induced by intracisternal kaolin injections in domestic juvenile pigs (43.6 ± 9.8 days). Age-matched sham controls received similar saline injections. MRI was performed to measure ventricular volume, and/or hippocampal and perirhinal sizes at 14 ± 4 days and 36 ± 8 days post-induction. Recognition memory was assessed one week before and after kaolin induction. Histology and immunohistochemistry in the hippocampus were performed at sacrifice. Results: The hippocampal width and the perirhinal cortex thickness were decreased (p < 0.05) in hydrocephalic pigs 14 ± 4 days post-induction. At sacrifice (36 ± 8 days post-induction), significant expansion of the cerebral ventricles was detected (p = 0.005) in hydrocephalic pigs compared with sham controls. The area of the dorsal hippocampus exhibited a reduction (p = 0.035) of 23.4% in the hydrocephalic pigs at sacrifice. Likewise, in hydrocephalic pigs, the percentages of neuronal precursor cells (doublecortin+ cells) and neurons decreased (p < 0.01) by 32.35%, and 19.74%, respectively, in the subgranular zone of the dorsal hippocampus. The percentage of reactive astrocytes (vimentin+) was increased (p = 0.041) by 48.7%. In contrast, microglial cells were found to decrease (p = 0.014) by 55.74% in the dorsal hippocampus in hydrocephalic pigs. There was no difference in the recognition index, a summative measure of learning and memory, one week before and after the induction of hydrocephalus. Conclusion: In untreated juvenile pigs, acquired hydrocephalus caused morphological alterations, reduced neurogenesis, and increased reactive astrocytosis in the hippocampus and perirhinal cortex.
KW - Acquired hydrocephalus
KW - Hippocampus
KW - Neurogenesis
KW - Neuroinflammation
KW - Perirhinal cortex
KW - Pig model
KW - Recognition memory
UR - http://www.scopus.com/inward/record.url?scp=85149446948&partnerID=8YFLogxK
U2 - 10.1016/j.expneurol.2023.114354
DO - 10.1016/j.expneurol.2023.114354
M3 - Article
C2 - 36822393
AN - SCOPUS:85149446948
SN - 0014-4886
VL - 363
JO - Experimental Neurology
JF - Experimental Neurology
M1 - 114354
ER -