Immunotherapeutic approach to reduce senescent cells and alleviate senescence-associated secretory phenotype in mice

Niraj Shrestha, Pallavi Chaturvedi, Xiaoyun Zhu, Michael J. Dee, Varghese George, Christopher Janney, Jack O. Egan, Bai Liu, Mark Foster, Lynne Marsala, Pamela Wong, Celia C. Cubitt, Jennifer A. Foltz, Jennifer Tran, Timothy Schappe, Karin Hsiao, Gilles M. Leclerc, Lijing You, Christian Echeverri, Catherine SpanoudisAna Carvalho, Leah Kanakaraj, Crystal Gilkes, Nicole Encalada, Lin Kong, Meng Wang, Byron Fang, Zheng Wang, Jin an Jiao, Gabriela J. Muniz, Emily K. Jeng, Nicole Valdivieso, Liying Li, Richard Deth, Melissa M. Berrien-Elliott, Todd A. Fehniger, Peter R. Rhode, Hing C. Wong

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Accumulation of senescent cells (SNCs) with a senescence-associated secretory phenotype (SASP) has been implicated as a major source of chronic sterile inflammation leading to many age-related pathologies. Herein, we provide evidence that a bifunctional immunotherapeutic, HCW9218, with capabilities of neutralizing TGF-β and stimulating immune cells, can be safely administered systemically to reduce SNCs and alleviate SASP in mice. In the diabetic db/db mouse model, subcutaneous administration of HCW9218 reduced senescent islet β cells and SASP resulting in improved glucose tolerance, insulin resistance, and aging index. In naturally aged mice, subcutaneous administration of HCW9218 durably reduced the level of SNCs and SASP, leading to lower expression of pro-inflammatory genes in peripheral organs. HCW9218 treatment also reverted the pattern of key regulatory circadian gene expression in aged mice to levels observed in young mice and impacted genes associated with metabolism and fibrosis in the liver. Single-nucleus RNA Sequencing analysis further revealed that HCW9218 treatment differentially changed the transcriptomic landscape of hepatocyte subtypes involving metabolic, signaling, cell-cycle, and senescence-associated pathways in naturally aged mice. Long-term survival studies also showed that HCW9218 treatment improved physical performance without compromising the health span of naturally aged mice. Thus, HCW9218 represents a novel immunotherapeutic approach and a clinically promising new class of senotherapeutic agents targeting cellular senescence-associated diseases.

Original languageEnglish
Article numbere13806
JournalAging Cell
Issue number5
StatePublished - May 2023


  • aging
  • cellular immunology
  • circadian genes
  • immunotherapy
  • inflammation
  • physical performance
  • senescence
  • senescent cell reduction
  • senomorphic
  • type 2 diabetes


Dive into the research topics of 'Immunotherapeutic approach to reduce senescent cells and alleviate senescence-associated secretory phenotype in mice'. Together they form a unique fingerprint.

Cite this