Abstract
Mutations in human copper-zinc superoxide dismutase (SOD1) cause an inherited form of amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease, motor neuron disease). Insoluble forms of mutant SOD1 accumulate in neural tissues of human ALS patients and in spinal cords of transgenic mice expressing these polypeptides, suggesting that SOD1-linked ALS is a protein misfolding disorder. Understanding the molecular basis for how the pathogenic mutations give rise to SOD1 folding intermediates, which may themselves be toxic, is therefore of keen interest. A critical step on the SOD1 folding pathway occurs when the copper chaperone for SOD1 (CCS) modifies the nascent SOD1 polypeptide by inserting the catalytic copper cofactor and oxidizing its intrasubunit disulfide bond. Recent studies reveal that pathogenic SOD1 proteins coming from cultured cells and from the spinal cords of transgenic mice tend to be metal-deficient and/or lacking the disulfide bond, raising the possibility that the disease-causing mutations may enhance levels of SOD1-folding intermediates by preventing or hindering CCS-mediated SOD1 maturation. This mini-review explores this hypothesis by highlighting the structural and biophysical properties of the pathogenic SOD1 mutants in the context of what is currently known about CCS structure and action. Other hypotheses as to the nature of toxicity inherent in pathogenic SOD1 proteins are not covered.
Original language | English |
---|---|
Pages (from-to) | 1140-1154 |
Number of pages | 15 |
Journal | Experimental Biology and Medicine |
Volume | 234 |
Issue number | 10 |
DOIs | |
State | Published - Oct 2009 |
Keywords
- Amyloid
- Amyotrophic lateral sclerosis
- Motor neuron disease
- Protein aggregation
- Protein misfolding
- Protofibrils
- SOD1
- Superoxide dismutase
Fingerprint
Dive into the research topics of 'Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Experimental Biology and Medicine, Vol. 234, No. 10, 10.2009, p. 1140-1154.
Research output: Contribution to journal › Short survey › peer-review
TY - JOUR
T1 - Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis
AU - Seetharaman, Sai V.
AU - Prudencio, Mercedes
AU - Karch, Celeste
AU - Holloway, Stephen P.
AU - Borchelt, David R.
AU - Hart, P. John
N1 - Funding Information: More than 100 mutations in SOD1 have been identified as causing fALS. The precise role of mutant SOD1 oligomerization/aggregation in disease pathogenesis remains uncertain, although there is little dispute that insoluble aggregates of mutant SOD1 are found in all of the transgenic mouse models that have been generated thus far, except in one model where CCS is also over-expressed. Ultimately, the role of mutant SOD1 aggregation in disease may not be established until therapeutic compounds that specifically target mutant SOD1 aggregation are tested in clinical applications. We suggest a potential mechanism of toxicity involving reduced ability of the mutant proteins to interact properly with CCS, which mediates critical post-translational modification of the SOD1 as it folds into a stable dimeric enzyme. The resulting immature pathogenic SOD1 proteins are essentially folding intermediates that exert their toxic effects through their aggregated or soluble forms, or both. Table 1. Published ALS-SOD1 Proteins Mutations Class Principal references B, β-barrel mutants; M, metal-binding region mutants; D, disulfide loop mutants. Exon 1 1. A4→S, T, or V B 89 – 92 2. C6→F or G B 94 , 95 3. V7→E B 97 4. L8→Q or V B 98 , 99 5. G10→V B 100 6. G12→R B 105 7. V14→G or M B 107 , 108 8. G16→A or S B 98 , 109 9. N19→S B 98 10. F20→C B 98 11. E21→G or K B 99 , 112 12. Q22→L B 98 Exon 2 13. G37→R B 6 14. L38→R or V B 6 , 116 15. G41→D or S B 6 16. H43→R B 6 17. F45→C B 93 18. H46→R M 121 19. V47→F B 98 20. H48→Q or R M 98 , 123 21. E49→K B 116 22. T54→R D 98 23. C57→R D 118 Exon 3 24. S59→I D 98 25. N65→S M 115 26. L67→R M 116 27. G72→C or S M 60 , 127 28. D76→V or Y M 107 , 129 Exon 4 29. H80→R M 130 30. L84→F or V M 127 , 131 31. G85→R M 6 32. N86→D, K, or S B 118 , 132 , 133 33. V87→A B 98 34. T88delTAD* B 98 35. A89→T or V B 98 , 135 36. D90→A or V B 136 , 137 37. G93→A, C, D, R, S, or V B 6 , 99 , 114 , 122 , 138 Exon 4 38. A95→T B 93 39. D96→N B 96 40. V97→M B 98 41. E100→G or K B 6 , 99 42. D101→G, H, N or Y B 101 – 104 43. I104→F B 106 44. S105→L or delSL B 98 45. L106→V B 6 46. G108→V B 110 47. D109→Y B 111 48. C111→Y B 113 49. I112→M or T B 114 , 115 50. I113→F or T B 6 , 98 51. G114→A B 98 52. R115→G B 117 53. T116→R B 118 54. V118→L or L ins (stop 122) B 98 , 119 , 120 55. D124→G or V M 98 , 122 56. D125→H M 123 57. L126→S or stop or del (stop 131) B 62 , 99 , 124 58. G127ins (stop 133) B 107 59. E132ins (stop 133) B 110 60. E133del* B 122 61. S134→N M 125 62. N139→H or K B 124 , 126 63. A140→G B 111 64. G141→E or stop B 98 , 102 65. L144→F or S B 5 , 128 66. A145→G or T B 98 , 128 67. C146→R D 99 68. G147→R B 98 69. V148→G or I B 5 , 106 70. I149→T B 124 71. I151→S or T B 98 , 134 Figure 1. SOD1 structure. (A) Human Cu-Zn superoxide dismutase [pdb code 2C9V ( 29 )]. The relationship of the two monomers is indicated. Intrasubunit disulfide bonds are shown as orange sticks, the metal-binding loops (loop IV and VII) are shown in blue and pink, respectively. Copper and zinc ions are shown as cyan and green spheres, respectively. (B) The spatial distribution of the known pathogenic SOD1 mutations. A monomer of SOD1 is shown in the same orientation as the rightmost subunit in Figure 1A. The α-carbon positions of fALS mutations falling in the β-barrel and in the metal-binding loop elements are shown as green and hot pink spheres, respectively. The α-carbon positions of pathogenic SOD1 mutants for which there are mouse models are shown as yellow spheres. Figure 2. Accumulation of SOD1-L126 truncation variant (L126Z) in somatodendritic compartments of spinal motor neurons. Tissue sections embedded in paraffin were deparaffinized and immunostained with hSOD1 anti-serum at a dilution of 1:500. (A) Non-transgenic littermate 9 months old. (B) Representative image from 3.5-month-old L126Z mice. (C) Image from a 7-month-old symptomatic SOD1-L126Z mouse shows longitudinal profiles of dendrites and motor neuron corpses filled with immunoreactivity. (D) Image from 9-month-old symptomatic SOD1-L126Z mouse shows intensifying of motor neuron soma and circular profiles resembling dendritic cross-sections. Scale bar = 50 mm [adapted from ( 14 )]. Figure 3. Metal deficiency in fALS SOD1 gives rise to linear cross-β fibrils and helical filamentous arrays through loss of negative design ( 37 , 74 ). (A) Linear, amyloid-like filaments formed by 3 dimers shown from top to bottom in green, gold, and blue. Nonnative SOD1-SOD1 interactions are shown as red patches in (i) and are boxed in (ii–iv). The “cross-β” structure observed in amyloid fibrils is shown schematically in (v). (B) Metal deficiency in pathogenic SOD1 also gives rise to water-filled helical filamentous arrays. (i) One-half of one turn of the helical filament is represented by the two dimers shown from top to bottom in green and gold. (ii–iii) Ribbon representation. The arrow indicates the diameter of the central cavity. The non-native interactions between SOD1 dimers are boxed. (iv) Schematic view of the helical filamentous array shown in (iii) with the new interdimer contacts shown as red patches. (v) This view of the helical filament is rotated 90° around a horizontal axis relative to the view in (iii) and (iv). Successive Zn–H46R dimers (green, yellow, blue, and red) comprise one turn of helical filament with a pitch of ~35 Å [adapted from ( 37 )]. Figure 4. Heterodimerization model of CCS action after O’Halloran and colleagues ( 68 ). Newly translated SOD1 monomers are shown in blue. CCS domain I is shown in red, CCS domain II is shown in green, and CCS domain III is shown in yellow (inset). Figure 5. Human CCS quaternary structure as a function of copper loading. The CCS canonical dimer [pdb code 1QUP ( 80 )] reorganizes to form the noncanonical dimer [pdb code 1JK9 ( 83 )] upon the binding of Cu(I) ( 82 ), thereby freeing domain II to interact with nascent SOD1. Figure 6. An alternate model of CCS action and how the various pathogenic SOD1 mutations may hinder CCS-mediated SOD1 maturation. ( 1 ) SOD1 is translated. ( 2 ) The canonical CCS dimer is loaded with Cu(I) to generate the noncanonical CCS dimer mediated by a Cu 4 S 6 cluster ( 82 ). ( 3 ) Nascent SOD1 binds to domain II of CCS in the noncanonical, Cu(I)-loaded CCS dimer. ( 4 ) Zinc is loaded into SOD1 (this could also occur as early as step 1). ( 5 – 7 ) Cu(I) from the Cu 4 S may interfere with CCS-mediated SOD1 maturation at the various positions indicated. The numbers of the pathogenic SOD1 mutants in the blue boxes correspond to their numbers in Table 1 . 6 cluster is transferred to nascent SOD1 and the intrasubunit disulfide bond in nascent SOD1 is oxidized ( 68 ). Upon being depleted with Cu(I), CCS reforms the canonical CCS dimer and the cycle repeats. The pathogenic SOD1 mutations listed in Table 1 This work has been supported over the years by the NIH/NINDS (PJH/DRB), the ALS Association (P.J.H./D.R.B.), the Robert A. Welch Foundation (P.J.H.), the Packard Foundation (D.R.B.), the William and Ella C. Owens Medical Research Foundation (P.J.H.), and the Judith and Jean Pape Adams Charitable Foundation (P.J.H.). Support for the X-ray Crystallography Core Laboratory by the Executive Research Council at the University of Texas Health Science Center is gratefully acknowledged. 1 Charcot JM, A J. Deux cas d’atrophie musculaire progressive avec lesions de la substance grise et de faisceaux anterolateraux de la moelle epiniere. Arch Physiol Norm Pathol 1 : 354 –367, 1869 . 2 Mulder DW, Kurland LT, Offord KP, Beard CM. Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology 36 : 511 –517, 1986 . 3 Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27 : 723 –749, 2004 . 4 Valentine JS, Doucette PA, Zittin Potter S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem 74 : 563 –593, 2005 . 5 Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, Getzoff ED, Hu P, Herzfeldt B, Roos RP, et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261 : 1047 –1051, 1993 . 6 Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362 : 59 –62, 1993 . 7 Hart PJ. Pathogenic superoxide dismutase structure, folding, aggregation and turnover. Curr Opin Chem Biol 10 : 131 –138, 2006 . 8 Winkler DD, Prudencio M, Karch C, Borchelt DR, Hart PJ. Copper-zinc superoxide dismutase, its copper chaperone, and familial amyotrophic lateral sclerosis. In: Dobson CM, Kelly JW, Ramirez-Alvarado M, Eds. Protein Misfolding Diseases: Current and Emerging Prinicples. Hoboken, NJ: John Wiley & Sons, Inc., 2009 . 9 Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 264 : 7761 –7764, 1989 . 10 Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276 : 38084 –38089, 2001 . 11 Pardo CA, Xu Z, Borchelt DR, Price DL, Sisodia SS, Cleveland DW. Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proc Natl Acad Sci U S A 92 : 954 –958, 1995 . 12 Marklund SL. Extracellular superoxide dismutase in human tissues and human cell lines. J Clin Invest 74 : 1398 –1403, 1984 . 13 Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH Jr., Scott RW, Snider WD. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13 : 43 –47, 1996 . 14 Wang J, Xu G, Li H, Gonzales V, Fromholt D, Karch C, Copeland NG, Jenkins NA, Borchelt DR. Somatodendritic accumulation of misfolded SOD1-L126Z in motor neurons mediates degeneration: alphaB-crystallin modulates aggregation. Hum Mol Genet 14 : 2335 –2347, 2005 . 15 Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price DL, Cleveland DW. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18 : 327 –338, 1997 . 16 Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264 : 1772 –1775, 1994 . 17 Sherman L, Levanon D, Lieman-Hurwitz J, Dafni N, Groner Y. Human Cu/Zn superoxide dismutase gene: molecular characterization of its two mRNA species. Nucleic Acids Res 12 : 9349 –9365, 1984 . 18 Wang J, Xu G, Borchelt DR. Mapping superoxide dismutase 1 domains of non-native interaction: roles of intra- and intermolecular disulfide bonding in aggregation. J Neurochem 96 : 1277 –1288, 2006 . 19 Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 92 : 689 –693, 1995 . 20 Epstein CJ, Avraham KB, Lovett M, Smith S, Elroy-Stein O, Rotman G, Bry C, Groner Y. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome. Proc Natl Acad Sci U S A 84 : 8044 –8048, 1987 . 21 Deng H-X, Shi Y, Furukawa Y, Zhai H, Fu R, Liu E, Gorrie GH, Khan MS, Hung WY, Bigio EH, Lukas T, Dal Canto MC, O’Halloran TV, Siddique T. Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc Natl Acad Sci U S A 103 : 7142 –7147, 2006 . 22 Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14 : 1105 –1116, 1995 . 23 Sasaki S, Nagai M, Aoki M, Komori T, Itoyama Y, Iwata M. Motor neuron disease in transgenic mice with an H46R mutant SOD1 gene. J Neuropathol Exp Neurol 66 : 517 –524, 2007 . 24 Watanabe Y, Yasui K, Nakano T, Doi K, Fukada Y, Kitayama M, Ishimoto M, Kurihara S, Kawashima M, Fukuda H, Adachi Y, Inoue T, Nakashima K. Mouse motor neuron disease caused by truncated SOD1 with or without C-terminal modification. Brain Res Mol Brain Res 135 : 12 –20, 2005 . 25 Jonsson PA, Ernhill K, Andersen PM, Bergemalm D, Brannstrom T, Gredal O, Nilsson P, Marklund SL. Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. Brain 127 : 73 –88, 2004 . 26 Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, Erickson J, Kulik J, DeVito L, Psaltis G, DeGennaro LJ, Cleveland DW, Rothstein JD. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A 99 : 1604 –1609, 2002 . 27 Nagai M, Aoki M, Miyoshi I, Kato M, Pasinelli P, Kasai N, Brown RH Jr, Itoyama Y. Rats expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease. J Neurosci 21 : 9246 –9254, 2001 . 28 Tainer JA, Getzoff ED, Beem KM, Richardson JS, Richardson DC. Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. J Mol Biol 160 : 181 –217, 1982 . 29 Strange RW, Antonyuk SV, Hough MA, Doucette PA, Valentine JS, Hasnain SS. Variable metallation of human superoxide dismutase: atomic resolution crystal structures of Cu-Zn, Zn-Zn and as-isolated wild-type enzymes. J Mol Biol 356 : 1152 –1162, 2006 . 30 Hayward LJ, Rodriguez JA, Kim JW, Tiwari A, Goto JJ, Cabelli DE, Valentine JS, Brown RH Jr. Decreased metallation and activity in subsets of mutant superoxide dismutases associated with familial amyotrophic lateral sclerosis. J Biol Chem 277 : 15923 –15931, 2002 . 31 Valentine JS, Hart PJ. Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 100 : 3617 –3622, 2003 . 32 Hough MA, Grossmann JG, Antonyuk SV, Strange RW, Doucette PA, Rodriguez JA, Whitson LJ, Hart PJ, Hayward LJ, Valentine JS, Hasnain SS. Dimer destabilization in superoxide dismutase may result in disease-causing properties: Structures of motor neuron disease mutants. Proc Natl Acad Sci U S A 101 : 5976 –5981, 2004 . 33 Hart PJ, Liu H, Pellegrini M, Nersissian AM, Gralla EB, Valentine JS, Eisenberg D. Subunit asymmetry in the three-dimensional structure of a human CuZnSOD mutant found in familial amyotrophic lateral sclerosis. Protein Sci 7 : 545 –555, 1998 . 34 Banci L, Bertini I, D’Amelio N, Libralesso E, Turano P, Valentine JS. Metalation of the amyotrophic lateral sclerosis mutant glycine 37 to arginine superoxide dismutase (SOD1) apoprotein restores its structural and dynamical properties in solution to those of metalated wild-type SOD1. Biochemistry 46 : 9953 –9962, 2007 . 35 DiDonato M, Craig L, Huff ME, Thayer MM, Cardoso RM, Kassmann CJ, Lo TP, Bruns CK, Powers ET, Kelly JW, Getzoff ED, Tainer JA. ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization. J Mol Biol 332 : 601 –615, 2003 . 36 Shipp EL, Cantini F, Bertini I, Valentine JS, Banci L. Dynamic properties of the G93A mutant of copper-zinc superoxide dismutase as detected by NMR spectroscopy: implications for the pathology of familial amyotrophic lateral sclerosis. Biochemistry 42 : 1890 –1899, 2003 . 37 Elam JS, Taylor AB, Strange R, Antonyuk A, Doucette PA, Rodriguez JA, Hasnain SS, Hayward LJ, Valentine JS, Yeates TO, Hart PJ. Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutants linked to familial ALS. Nat Struct Biol 10 : 461 –467, 2003 . 38 Antonyuk S, Elam JS, Hough MA, Strange RW, Doucette PA, Rodriguez JA, Hayward LJ, Valentine JS, Hart PJ, Hasnain SS. Structural consequences of the familial amyotrophic lateral sclerosis SOD1 mutant His46Arg. Protein Sci 14 : 1201 –1213, 2005 . 39 Wang J. Disease-associated mutations at copper ligand histidine residues of superoxide dismutase 1 diminish the binding of copper and compromise dimer stability. J Biol Chem 282 : 345 –352, 2007 . 40 Cao X, Antonyuk SV, Seetharaman SV, Whitson LJ, Taylor AB, Holloway SP, Strange RW, Doucette PA, Valentine JS, Tiwari A, Hayward LJ, Padua S, Cohlberg JA, Hasnain SS, Hart PJ. Structures of the G85R variant of SOD1 in familial amyotrophic lateral sclerosis. J Biol Chem 283 : 16169 –16177, 2008 . 41 Elam JS, Malek K, Rodriguez JA, Doucette PA, Taylor AB, Hayward LJ, Cabelli DE, Valentine JS, Hart PJ. An alternative mechanism of bicarbonate-mediated peroxidation by copper-zinc superoxide dis-mutase. J Biol Chem 278 : 21032 –21039, 2003 . 42 Banci L, Bertini I, D’Amelio N, Gaggelli E, Libralesso E, Matecko I, Turano P, Valentine JS. Fully metallated S134N Cu,Zn-superoxide dismutase displays abnormal mobility and intermolecular contacts in solution. J Biol Chem 280 : 35815 –35821, 2005 . 43 Rodriguez JA, Shaw BF, Durazo A, Sohn SH, Doucette PA, Nersissian AM, Faull KF, Eggers DK, Tiwari A, Hayward LJ, Valentine JS. Destabilization of apoprotein is insufficient to explain Cu,Zn-superoxide dismutase-linked ALS pathogenesis. Proc Natl Acad Sci U S A 102 : 10516 –10521, 2005 . 44 Rodriguez JA, Valentine JS, Eggers DK, Roe JA, Tiwari A, Brown RH Jr, Hayward LJ. Familial ALS-associated mutations decrease the thermal stability of distinctly metallated species of human copper-zinc superoxide dismutase. J Biol Chem 277 : 15932 –15937, 2002 . 45 Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B, Gitlin JD. The copper chaperone for superoxide dismutase. J Biol Chem 272 : 23469 –23472, 1997 . 46 Forman HJ, Fridovich I. On the stability of bovine superoxide dismutase. The effects of metals. Histidine at the active site of superoxide dismutase. J Biol Chem 248 : 2645 –2649, 1973 . 47 Hartz JW, Deutsch HF. Subunit structure of human superoxide dismutase. J Biol Chem 247 : 7043 –7050, 1972 . 48 Doucette PA, Whitson LJ, Cao X, Schirf V, Demeler B, Valentine JS, Hansen JC, Hart PJ. Dissociation of human copper-zinc superoxide dismutase dimers using chaotrope and reductant. Insights into the molecular basis for dimer stability. J Biol Chem 279 : 54558 –54566, 2004 . 49 Lindberg MJNJ, Holmgren A, Oliveberg M. Folding of human superoxide dismutase: disulfide reduction prevents dimerization and produces marginally stable monomers. Proc Natl Acad Sci U S A 101 : 15893 –15898, 2004 . 50 Arnesano F, Banci L, Bertini I, Martinelli M, Furukawa Y, O’Halloran TV. The unusually stable quaternary structure of human Cu,Zn-superoxide dismutase 1 is controlled by both metal occupancy and disulfide status. J Biol Chem 279 : 47998 –48003, 2004 . 51 Banci L, Bertini I, Cantini F, D’Amelio N, Gaggelli E. Human SOD1 before harboring the catalytic metal: solution structure of copper-depleted, disulfide-reduced form. J Biol Chem 281 : 2333 –2337, 2006 . 52 Wang J, Slunt H, Gonzales V, Fromholt D, Coonfield M, Copeland NG, Jenkins NA, Borchelt DR. Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum Mol Genet 12 : 2753 –2764, 2003 . 53 Murphy RM. Peptide aggregation in neurodegenerative disease. Annu Rev Biomed Eng 4 : 155 –174, 2002 . 54 Ray SS, Nowak RJ, Strokovich K, Brown RH Jr., Walz T, Lansbury PT Jr. An intersubunit disulfide bond prevents in vitro aggregation of a superoxide dismutase-1 mutant linked to familial amytrophic lateral sclerosis. Biochemistry 43 : 4899 –4905, 2004 . 55 Karch CM, Borchelt DR. A limited role for disulfide cross-linking in the aggregation of mutant SOD1 linked to familial amyotrophic lateral sclerosis. J Biol Chem 283 : 13528 –13537, 2008 . 56 Shibata N, Hirano A, Kobayashi M, Siddique T, Deng HX, Hung WY, Kato T, Asayama K. Intense superoxide dismutase-1 immunoreactivity in intracytoplasmic hyaline inclusions of familial amyotrophic lateral sclerosis with posterior column involvement. J Neuropathol Exp Neurol 55 : 481 –490, 1996 . 57 Kato S, Sumi-Akamaru H, Fujimura H, Sakoda S, Kato M, Hirano A, Takikawa M, Ohama E. Copper chaperone for superoxide dismutase co-aggregates with superoxide dismutase 1 (SOD1) in neuronal Lewy body-like hyaline inclusions: an immunohistochemical study on familial amyotrophic lateral sclerosis with SOD1 gene mutation. Acta Neuropathol (Berl) 102 : 233 –238, 2001 . 58 Ohi T, Nabeshima K, Kato S, Yazawa S, Takechi S. Familial amyotrophic lateral sclerosis with His46Arg mutation in Cu/Zn superoxide dismutase presenting characteristic clinical features and Lewy body-like hyaline inclusions. J Neurol Sci 225 : 19 –25, 2004 . 59 Kokubo Y, Kuzuhara S, Narita Y, Kikugawa K, Nakano R, Inuzuka T, Tsuji S, Watanabe M, Miyazaki T, Murayama S, Ihara Y. Accumulation of neurofilaments and SOD1-immunoreactive products in a patient with familial amyotrophic lateral sclerosis with I113T SOD1 mutation. Arch Neurol 56 : 1506 –1508, 1999 . 60 Stewart HG, Mackenzie IR, Eisen A, Brännström T, Marklund SL, Andersen PM. Clinicopathological phenotype of ALS with a novel G72C SOD1 gene mutation mimicking a myopathy. Muscle Nerve 33 : 701 –706, 2006 . 61 Kato S, Shimoda M, Watanabe Y, Nakashima K, Takahashi K, Ohama E. Familial amyotrophic lateral sclerosis with a two base pair deletion in superoxide dismutase 1 gene: Multisystem degeneration with intracytoplasmic hyaline inclusioins in astrocytes. J Neuropathol Exp Neurol 55 : 1089 –1101, 1996 . 62 Takehisa Y, Ujike H, Ishizu H, Terada S, Haraguchi T, Tanaka Y, Nishinaka T, Nobukuni K, Ihara Y, Namba R, Yasuda T, Nishibori M, Hayabara T, Kuroda S. Familial amyotrophic lateral sclerosis with a novel Leu126Ser mutation in the copper/zinc superoxide dismutase gene showing mild clinical features and lewy body-like hyaline inclusions. Arch Neurol 58 : 736 –740, 2001 . 63 Ince PG. Familial amyotrophic lateral sclerosis with a mutation in exon 4 of the Cu/Zn superoxide dismutase gene: pathological and immunocytochemical changes. Acta Neuropathol 92 : 395 –403, 1996 . 64 Shaw CE, Enayat ZE, Powell JF, Anderson VE, Radunovic A, al-Sarraj S, Leigh PN. Familial amyotrophic lateral sclerosis. Molecular pathology of a patient with a SOD1 mutation. Neurology 49 : 1612 –1616, 1997 . 65 Kadekawa J, Fujimura H, Ogawa Y, Hattori N, Kaido M, Nishimura T, Yoshikawa H, Shirahata N, Sakoda S, Yanagihara T. A clinicopathological study of a patient with familial amyotrophic lateral sclerosis associated with a two base pair deletion in the copper/zinc superoxide dismutase (SOD1) gene. Acta Neuropathol 94 : 617 –622, 1997 . 66 Katayama S, Watanabe C, Noda K, Ohishi H, Yamamura Y, Nishisaka T, Inai K, Asayama K, Murayama S, Nakamura S. Numerous conglomerate inclusions in slowly progressive familial amyotrophic lateral sclerosis with posterior column involvement. J Neurol Sci 171 : 72 –77, 1999 . 67 Banci L, Bertini I, Durazo A, Girotto S, Gralla EB, Martinelli M, Valentine JS, Vieru M, Whitelegge JP. Metal-free superoxide dismutase forms soluble oligomers under physiological conditions: a possible general mechanism for familial ALS. Proc Natl Acad Sci U S A 104 : 11263 –11267, 2007 . 68 Furukawa Y, O’Halloran TV. Posttranslational modifications in Cu,Zn-superoxide dismutase and mutations associated with amyotrophic lateral sclerosis. Antioxid Redox Signal 8 : 847 –867, 2006 . 69 Cozzolino M, Amori I, Pesaresi MG, Ferri A, Nencini M, Carrí MT. Cysteine 111 affects aggregation and cytotoxicity of mutant Cu,Zn-superoxide dismutase associated with familial amyotrophic lateral sclerosis. J Biol Chem 283 : 866 –874, 2008 . 70 Jonsson PA, Karin SG, Peter MA, Thomas Bnm, Mikael L, Mikael O. Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. Brain 129 : 451 –464, 2006 . 71 Niwa J-i, Yamada S, Ishigaki S, Sone J, Takahashi M, Katsuno M, Tanaka F, Doyu M, Sobue G. Disulfide bond mediates aggregation, toxicity, and ubiquitylation of familial amyotrophic lateral sclerosis–linked mutant SOD1. J Biol Chem 282 : 28087 –28095, 2007 . 72 Banci L, Bertini I, Boca M, Girotto S, Martinelli M, Valentine JS, Vieru M. SOD1 and amyotrophic lateral sclerosis: Mutations and oligomerization. PLoS ONE 3 , 2008 . 73 Chattopadhyay M, Durazo A, Sohn SH, Strong CD, Gralla EB, Whitelegge JP, Valentine JS. Initiation and elongation in fibrillation of ALS-linked superoxide dismutase. Proc Natl Acad Sci U S A 105 : 18663 –18668, 2008 . 74 Richardson JS, Richardson DC. Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci U S A 99 : 2754 –2759, 2002 . 75 Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418 : 291 , 2002 . 76 Witan H, Kern A, Koziollek-Drechsler I, Wade R, Behl C, Clement AM. Heterodimer formation of wild-type and amyotrophic lateral sclerosis–causing mutant Cu/Zn-superoxide dismutase induces toxicity independent of protein aggregation. Hum Mol Genet 17 : 1373 –1385, 2008 . 77 Matsumoto G, Stojanovic A, Holmberg CI, Kim S, Morimoto RI. Structural properties and neuronal toxicity of amyotrophic lateral sclerosis–associated Cu/Zn superoxide dismutase 1 aggregates. J Cell Biol 171 : 75 –85, 2005 . 78 Brown NM, Torres AS, Doan PE, O’Halloran TV. Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase. Proc Natl Acad Sci U S A 101 : 5518 –5523, 2004 . 79 Rothstein JD, Dykes-Hoberg M, Corson LB, Becker M, Cleveland DW, Price DL, Culotta VC, Wong PC. The copper chaperone CCS is abundant in neurons and astrocytes in human and rodent brain. J Neurochem 72 : 422 –429, 1999 . 80 Lamb AL, Wernimont AK, Pufahl RA, Culotta VC, O’Halloran TV, Rosenzweig AC. Crystal structure of the copper chaperone for superoxide dismutase. Nat Struct Biol 6 : 724 –729, 1999 . 81 Schmidt PJ, Rae TD, Pufahl RA, Hamma T, Strain J, O’Halloran TV, Culotta VC. Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase. J Biol Chem 274 : 23719 –23725, 1999 . 82 Stasser JP, Siluvai GS, Barry AN, Blackburn NJ. A multinuclear copper(I) cluster forms the dimerization interface in copper-loaded human copper chaperone for superoxide dismutase. Biochemistry 46 : 11845 –11856, 2007 . 83 Lamb AL, Torres AS, O’Halloran TV, Rosenzweig AC. Hetero-dimeric structure of superoxide dismutase in complex with its metallochaperone. Nat Struct Biol 8 : 751 –755, 2001 . 84 Furukawa Y, Kaneko K, Yamanaka K, O’Halloran TV, Nukina N. Complete loss of post-translational modifications triggers fibrillar aggregation of SOD1 in the familial form of amyotrophic lateral sclerosis. J Biol Chem 283 : 24167 –24176, 2008 . 85 Karch CM, Prudencio M, Winkler DD, Hart PJ, Borchelt DR. Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS. Proc Natl Acad Sci U S A (in press), 2009 . 86 Winkler DD, Schuermann JP, Cao X, Holloway SP, Borchelt DR, Carroll MC, Proescher JB, Culotta VC, Hart PJ. Structural and biophysical properties of the pathogenic SOD1 variant H46R/H48Q. Biochemistry 48 : 3436 –3447, 2009 . 87 Son M, Puttaparthi K, Kawamata H, Rajendran B, Boyer PJ, Manfredi G, Elliott JL. Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology. Proc Natl Acad Sci U S A 104 : 6072 –6077, 2007 . 88 Proescher JB, Son M, Elliott JL, Culotta VC. Biological effects of CCS in the absence of SOD1 enzyme activation: implications for disease in a mouse model for ALS. Hum Mol Genet 17 : 1728 –1737, 2008 . 89 Nakano R, Sato S, Inuzuka T, Sakimura K, Mishina M, Takahashi H, Ikuta F, Honma Y, Fujii J, Taniguchi N, et al. A novel mutation in Cu/Zn superoxide dismutase gene in Japanese familial amyotrophic lateral sclerosis. Biochem Biophys Res Commun 200 : 695 –703, 1994 . 90 Nakanishi T, Kishikawa M, Miyazaki A, Shimizu A, Ogawa Y, Sakoda S, Ohi T, Shoji H. Simple and defined method to detect the SOD-1 mutants from patients with familial amyotrophic lateral sclerosis by mass spectrometry. J Neurosci Methods 81 : 41 –44, 1998 . 91 Yim HS, Kang JH, Chock PB, Stadtman ER, Yim MB. A familial amyotrophic lateral sclerosis–associated A4V Cu, Zn- superoxide dismutase mutant has a lower Km for hydrogen peroxide. Correlation between clinical severity and the Km value. J Biol Chem 272 : 8861 –8863, 1997 . 92 Rosen DR, Bowling AC, Patterson D, Usdin TB, Sapp P, Mezey E, McKenna-Yasek D, O’Regan J, Rahmani Z, Ferrante RJ, et al. A frequent ala 4 to val superoxide dismutase-1 mutation is associated with a rapidly progressive familial amyotrophic lateral sclerosis. Hum Mol Genet 3 : 981 –987, 1994 . 93 Gellera C, Castellotti B, Riggio MC, Silani V, Morandi L, Testa D, Casali C, Taroni F, Di Donato S, Zeviani M, Mariotti C. Superoxide dismutase gene mutations in Italian patients with familial and sporadic amyotrophic lateral sclerosis: Identification of three novel missense mutations. Neuromuscul Disord 11 : 404 –410, 2001 . 94 Kohno S, Takahashi Y, Miyajima H, Serizawa M, Mizoguchi K. A novel mutation (Cys6Gly) in the Cu/Zn superoxide dismutase gene associated with rapidly progressive familial amyotrophic lateral sclerosis. Neurosci Lett 276 : 135 –137, 1999 . 95 Morita M, Aoki M, Abe K, Hasegawa T, Sakuma R, Onodera Y, Ichikawa N, Nishizawa M, Itoyama Y. A novel two-base mutation in the Cu/Zn superoxide dismutase gene associated with familial amyotrophic lateral sclerosis in Japan. Neurosci Lett 205 : 79 –82, 1996 . 96 Hand CK, Mayeux-Portas V, Khoris J, Briolotti V, Clavelou P, Camu W, Rouleau GA. Compound heterozygous D90A and D96N SOD1 mutations in a recessive amyotrophic lateral sclerosis family. Ann Neurol 49 : 267 –271, 2001 . 97 Hirano M, Fujii J, Nagai Y, Sonobe M, Okamoto K, Araki H, Taniguchi N, Ueno S. A new variant Cu/Zn superoxide dismutase (Val7–>Glu) deduced from lymphocyte mRNA sequences from Japanese patients with familial amyotrophic lateral sclerosis. Biochem Biophys Res Commun 204 : 572 –577, 1994 . 98 Andersen PM, Sims KB, Xin WW, Kiely R, O’Neill G, Ravits J, Pioro E, Harati Y, Brower RD, Levine JS, Heinicke HU, Seltzer W, Boss M, Brown RH Jr. Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. Amyotroph Lateral Scler Other Motor Neuron Disord 4 : 62 –73, 2003 . 99 Siddique T, Deng HX. Genetics of amyotrophic lateral sclerosis. Hum Mol Genet 5 (Spec No): 1465 –1470, 1996 . 100 Kim NH, Kim HJ, Kim M, Lee KW. A novel SOD1 gene mutation in a Korean family with amyotrophic lateral sclerosis. J Neurol Sci 206 : 65 –69, 2003 . 101 Yulug IG, Katsanis N, de Belleroche J, Collinge J, Fisher EM. An improved protocol for the analysis of SOD1 gene mutations, and a new mutation in exon 4. Hum Mol Genet 4 : 1101 –1104, 1995 . 102 Sato T, Yamamoto Y, Nakanishi T, Fukada K, Sugai F, Zhou Z, Okuno T, Nagano S, Hirata S, Shimizu A, Sakoda S. Identification of two novel mutations in the Cu/Zn superoxide dismutase gene with familial amyotrophic lateral sclerosis: mass spectrometric and genomic analyses. J Neurol Sci 218 : 79 –83, 2004 . 103 Jones CT, Shaw PJ, Chari G, Brock DJ. Identification of a novel exon 4 SOD1 mutation in a sporadic amyotrophic lateral sclerosis patient. Mol Cell Probes 8 : 329 –330, 1994 . 104 Tan CF, Piao YS, Hayashi S, Obata H, Umeda Y, Sato M, Fukushima T, Nakano R, Tsuji S, Takahashi H. Familial amyotrophic lateral sclerosis with bulbar onset and a novel Asp101Tyr Cu/Zn superoxide dismutase gene mutation. Acta Neuropathol 108 : 332 –336, 2004 . 105 Penco S, Schenone A, Bordo D, Bolognesi M, Abbruzzese M, Bugiani O, Ajmar F, Garre C. A SOD1 gene mutation in a patient with slowly progressing familial ALS. Neurology 53 : 404 –406, 1999 . 106 Ikeda M, Abe K, Aoki M, Sahara M, Watanabe M, Shoji M, St George-Hyslop PH, Hirai S, Itoyama Y. Variable clinical symptoms in familial amyotrophic lateral sclerosis with a novel point mutation in the Cu/Zn superoxide dismutase gene. Neurology 45 : 2038 –2042, 1995 . 107 Andersen PM, Nilsson P, Keranen ML, Forsgren L, Hagglund J, Karlsborg M, Ronnevi LO, Gredal O, Marklund SL. Phenotypic heterogeneity in motor neuron disease patients with CuZn-superoxide dismutase mutations in Scandinavia. Brain 120 (Pt 10): 1723 –1737, 1997 . 108 Deng HX, Tainer JA, Mitsumoto H, Ohnishi A, He X, Hung WY, Zhao Y, Juneja T, Hentati A, Siddique T. Two novel SOD1 mutations in patients with familial amyotrophic lateral sclerosis. Hum Mol Genet 4 : 1113 –1116, 1995 . 109 Kawamata J, Shimohama S, Takano S, Harada K, Ueda K, Kimura J. Novel G16S (GGC-AGC) mutation in the SOD-1 gene in a patient with apparently sporadic young-onset amyotrophic lateral sclerosis. Hum Mutat 9 : 356 –358, 1997 . 110 Orrell RW, Habgood JJ, Gardiner I, King AW, Bowe FA, Hallewell RA, Marklund SL, Greenwood J, Lane RJ, deBelleroche J. Clinical and functional investigation of 10 missense mutations and a novel frameshift insertion mutation of the gene for copper-zinc superoxide dismutase in UK families with amyotrophic lateral sclerosis. Neurology 48 : 746 –751, 1997 . 111 Naini A, Mehrazin M, Lu J, Gordon P, Mitsumoto H. Identification of a novel D109Y mutation in Cu/Zn superoxide dismutase (sod1) gene associated with amyotrophic lateral sclerosis. J Neurol Sci 254 : 17 –21, 2007 . 112 Jones CT, Swingler RJ, Brock DJ. Identification of a novel SOD1 mutation in an apparently sporadic amyotrophic lateral sclerosis patient and the detection of Ile113Thr in three others. Hum Mol Genet 3 : 649 –650, 1994 . 113 Shibata N, Kawaguchi M, Uchida K, Kakita A, Takahashi H, Nakano R, Fujimura H, Sakoda S, Ihara Y, Nobukuni K, Takehisa Y, Kuroda S, Kokubo Y, Kuzuhara S, Honma T, Mochizuki Y, Mizutani T, Yamada S, Toi S, Sasaki S, Iwata M, Hirano A, Yamamoto T, Kato Y, Sawada T, Kobayashi M. Protein-bound crotonaldehyde accumulates in the spinal cord of superoxide dismutase-1 mutation-associated familial amyotrophic lateral sclerosis and its transgenic mouse model. Neuropathology 27 : 49 –61, 2007 . 114 Esteban J, Rosen DR, Bowling AC, Sapp P, McKenna-Yasek D, O’Regan JP, Beal MF, Horvitz HR, Brown RH Jr. Identification of two novel mutations and a new polymorphism in the gene for Cu/Zn superoxide dismutase in patients with amyotrophic lateral sclerosis. Hum Mol Genet 3 : 997 –998, 1994 . 115 Garcia-Redondo A, Bustos F, Juan YSB, Del Hoyo P, Jimenez S, Campos Y, Martin MA, Rubio JC, Canadillas F, Arenas J, Esteban J. Molecular analysis of the superoxide dismutase 1 gene in Spanish patients with sporadic or familial amyotrophic lateral sclerosis. Muscle Nerve 26 : 274 –278, 2002 . 116 Boukaftane Y, Khoris J, Moulard B, Salachas F, Meininger V, Malafosse A, Camu W, Rouleau GA. Identification of six novel SOD1 gene mutations in familial amyotrophic lateral sclerosis. Can J Neurol Sci 25 : 192 –196, 1998 . 117 Kostrzewa M, Burck-Lehmann U, Muller U. Autosomal dominant amyotrophic lateral sclerosis: a novel mutation in the Cu/Zn superoxide dismutase-1 gene. Hum Mol Genet 3 : 2261 –2262, 1994 . 118 Andersen PM. Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene. Curr Neurol Neurosci Rep 6 : 37 –46, 2006 . 119 Shimizu T, Kawata A, Kato S, Hayashi M, Takamoto K, Hayashi H. Autonomic failure in ALS with a novel SOD1 gene mutation. Neurology 54 : 1534 –1537, 2000 . 120 Jackson M, Al-Chalabi A, Enayat ZE, Chioza B, Leigh PN, Morrison KE. Copper/zinc superoxide dismutase 1 and sporadic amyotrophic lateral sclerosis: analysis of 155 cases and identification of a novel insertion mutation. Ann Neurol 42 : 803 –807, 1997 . 121 Aoki M, Ogasawara M, Matsubara Y, Narisawa K, Nakamura S, Itoyama Y, Abe K. Mild ALS in Japan associated with novel SOD mutation. Nat Genet 5 : 323 –324, 1993 . 122 Hosler BA, Nicholson GA, Sapp PC, Chin W, Orrell RW, de Belleroche JS, Esteban J, Hayward LJ, McKenna-Yasek D, Yeung L, Cherryson AK, Dench JE, Wilton SD, Laing NG, Horvitz HR, Brown RH Jr. Three novel mutations and two variants in the gene for Cu/Zn superoxide dismutase in familial amyotrophic lateral sclerosis. Neuromuscul Disord 6 : 361 –366, 1996 . 123 Enayat ZE, Orrell RW, Claus A, Ludolph A, Bachus R, Brockmuller J, Ray-Chaudhuri K, Radunovic A, Shaw C, Wilkinson J, et al. Two novel mutations in the gene for copper zinc superoxide dismutase in UK families with amyotrophic lateral sclerosis. Hum Mol Genet 4 : 1239 –1240, 1995 . 124 Pramatarova A, Figlewicz DA, Krizus A, Han FY, Ceballos-Picot I, Nicole A, Dib M, Meininger V, Brown RH, Rouleau GA. Identification of new mutations in the Cu/Zn superoxide dismutase gene of patients with familial amyotrophic lateral sclerosis. Am J Hum Genet 56 : 592 –596, 1995 . 125 Watanabe M, Aoki M, Abe K, Shoji M, Iizuka T, Ikeda Y, Hirai S, Kurokawa K, Kato T, Sasaki H, Itoyama Y. A novel missense point mutation (S134N) of the Cu/Zn superoxide dismutase gene in a patient with familial motor neuron disease. Hum Mutat 9 : 69 –71, 1997 . 126 Nogales-Gadea G, Garcia-Arumi E, Andreu AL, Cervera C, Gamez J. A novel exon 5 mutation (N139H) in the SOD1 gene in a Spanish family associated with incomplete penetrance. J Neurol Sci 219 : 1 –6, 2004 . 127 Shaw CE, Enayat ZE, Chioza BA, Al-Chalabi A, Radunovic A, Powell JF. Mutations in all five exons of SOD-1 may cause ALS. Ann Neurol 43 : 390 –394, 1998 . 128 Sapp PC, Rosen DR, Hosler BA, Esteban J, McKenna-Yasek D, Regan JPO. Identification of three novel mutations in the gene for Cu/Zn superoxide dismutase in patients with familial amyotrophic lateral sclerosis. Neuromusc Disord 5 : 353 –357, 1995 . 129 Segovia-Silvestre T, Andreu AL, Vives-Bauza C, Garcia-Arumi E, Cervera C, Gamez J. A novel exon 3 mutation (D76V) in the SOD1 gene associated with slowly progressive ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 3 : 69 –74, 2002 . 130 Alexander MD, Traynor BJ, Miller N, Corr B, Frost E, McQuaid S, Brett FM, Green A, Hardiman O. “True” sporadic ALS associated with a novel SOD-1 mutation. Ann Neurol 52 : 680 –683, 2002 . 131 Aoki M, Abe K, Houi K, Ogasawara M, Matsubara Y, Kobayashi T. Variance of age at onset in a Japanese family with amyotrophic lateral sclerosis associated with a novel Cu/Zn superoxide dismutase mutation. Ann Neurol 37 : 676 –679, 1995 . 132 Beck M, Sendtner M, Toyka KV. Novel SOD1 N86K mutation is associated with a severe phenotype in familial ALS. Muscle Nerve 36 : 111 –114, 2007 . 133 Hayward C, Brock DJ, Minns RA, Swingler RJ. Homozygosity for Asn86Ser mutation in the CuZn-superoxide dismutase gene produces a severe clinical phenotype in a juvenile onset case of familial amyotrophic lateral sclerosis. J Med Genet 35 : 174 , 1998 . 134 Kostrzewa M, Damian MS, Muller U. Superoxide dismutase 1: identification of a novel mutation in a case of familial amyotrophic lateral sclerosis. Hum Genet 98 : 48 –50, 1996 . 135 Rezania K, Yan J, Dellefave L, Deng HX, Siddique N, Pascuzzi RT, Siddique T, Roos RP. A rare Cu/Zn superoxide dismutase mutation causing familial amyotrophic lateral sclerosis with variable age of onset, incomplete penetrance and a sensory neuropathy. Amyotroph Lateral Scler Other Motor Neuron Disord 4 : 162 –166, 2003 . 136 Andersen PM, Nilsson P, Ala-Hurula V, Keranen ML, Tarvainen I, Haltia T, Nilsson L, Binzer M, Forsgren L, Marklund SL. Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase. Nat Genet 10 : 61 –66, 1995 . 137 Chou CM, Huang CJ, Shih CM, Chen YP, Liu TP, Chen CT. Identification of three mutations in the Cu,Zn-superoxide dismutase (Cu,Zn-SOD) gene with familial amyotrophic lateral sclerosis: transduction of human Cu,Zn-SOD into PC12 cells by HIV-1 TAT protein basic domain. Ann N Y Acad Sci 1042 : 303 –313, 2005 . 138 Elshafey A, Lanyon WG, Connor JM. Identification of a new missense point mutation in exon 4 of the Cu/Zn superoxide dismutase (SOD-1) gene in a family with amyotrophic lateral sclerosis. Hum Mol Genet 3 : 363 –364, 1994 .
PY - 2009/10
Y1 - 2009/10
N2 - Mutations in human copper-zinc superoxide dismutase (SOD1) cause an inherited form of amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease, motor neuron disease). Insoluble forms of mutant SOD1 accumulate in neural tissues of human ALS patients and in spinal cords of transgenic mice expressing these polypeptides, suggesting that SOD1-linked ALS is a protein misfolding disorder. Understanding the molecular basis for how the pathogenic mutations give rise to SOD1 folding intermediates, which may themselves be toxic, is therefore of keen interest. A critical step on the SOD1 folding pathway occurs when the copper chaperone for SOD1 (CCS) modifies the nascent SOD1 polypeptide by inserting the catalytic copper cofactor and oxidizing its intrasubunit disulfide bond. Recent studies reveal that pathogenic SOD1 proteins coming from cultured cells and from the spinal cords of transgenic mice tend to be metal-deficient and/or lacking the disulfide bond, raising the possibility that the disease-causing mutations may enhance levels of SOD1-folding intermediates by preventing or hindering CCS-mediated SOD1 maturation. This mini-review explores this hypothesis by highlighting the structural and biophysical properties of the pathogenic SOD1 mutants in the context of what is currently known about CCS structure and action. Other hypotheses as to the nature of toxicity inherent in pathogenic SOD1 proteins are not covered.
AB - Mutations in human copper-zinc superoxide dismutase (SOD1) cause an inherited form of amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease, motor neuron disease). Insoluble forms of mutant SOD1 accumulate in neural tissues of human ALS patients and in spinal cords of transgenic mice expressing these polypeptides, suggesting that SOD1-linked ALS is a protein misfolding disorder. Understanding the molecular basis for how the pathogenic mutations give rise to SOD1 folding intermediates, which may themselves be toxic, is therefore of keen interest. A critical step on the SOD1 folding pathway occurs when the copper chaperone for SOD1 (CCS) modifies the nascent SOD1 polypeptide by inserting the catalytic copper cofactor and oxidizing its intrasubunit disulfide bond. Recent studies reveal that pathogenic SOD1 proteins coming from cultured cells and from the spinal cords of transgenic mice tend to be metal-deficient and/or lacking the disulfide bond, raising the possibility that the disease-causing mutations may enhance levels of SOD1-folding intermediates by preventing or hindering CCS-mediated SOD1 maturation. This mini-review explores this hypothesis by highlighting the structural and biophysical properties of the pathogenic SOD1 mutants in the context of what is currently known about CCS structure and action. Other hypotheses as to the nature of toxicity inherent in pathogenic SOD1 proteins are not covered.
KW - Amyloid
KW - Amyotrophic lateral sclerosis
KW - Motor neuron disease
KW - Protein aggregation
KW - Protein misfolding
KW - Protofibrils
KW - SOD1
KW - Superoxide dismutase
UR - http://www.scopus.com/inward/record.url?scp=70349759885&partnerID=8YFLogxK
U2 - 10.3181/0903-MR-104
DO - 10.3181/0903-MR-104
M3 - Short survey
C2 - 19596823
AN - SCOPUS:70349759885
SN - 1535-3702
VL - 234
SP - 1140
EP - 1154
JO - Experimental Biology and Medicine
JF - Experimental Biology and Medicine
IS - 10
ER -