TY - JOUR
T1 - Imaging melphalan therapy response in preclinical extramedullary multiple myeloma with 18F-FDOPA and 18F-FDG PET
AU - Hathi, Deep K.
AU - DeLassus, Elizabeth N.
AU - Achilefu, Samuel
AU - McConathy, Jonathan
AU - Shokeen, Monica
N1 - Funding Information:
This research was funded primarily by NCI grants R01 CA176221 and U54 CA199092. We also acknowledge support via grants P50 CA094056, P30 CA091842, and K08CA154790 from the NCI; grant DE-SC0012737 from the U.S. Department of Energy; and the MIR Facilities Fund 18-007 for pilot imaging. No other potential conflict of interest relevant to this article was reported.
Publisher Copyright:
Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
PY - 2018/10/1
Y1 - 2018/10/1
N2 - Multiple myeloma (MM) is a debilitating neoplasm of terminally differentiated plasma B cells that resulted in over 13,000 deaths in 2017 alone. Combination therapies involving melphalan, a smallmolecule DNA alkylating agent, are commonly prescribed to patients with relapsed or refractory MM, necessitating the stratification of responding patients to minimize toxicities and improve quality of life. Here, we evaluated the use of 3,4-dihydroxy-6-18F-fluoro-Lphenylalanine (18F-FDOPA), a clinically available PET radiotracer with specificity to the L-type amino acid transporter 1 (LAT1), which also mediates melphalan uptake, for imaging melphalan therapy response in a preclinical immunocompetent model of MM. Methods: C57BL/KaLwRij mice were implanted subcutaneously with unilateral murine green fluorescent protein-expressing 5TGM1 tumors and divided into 3 independent groups: untreated, treated beginning week 2 after tumor implantation, and treated beginning week 3 after tumor implantation. The untreated and week 2 treated groups were imaged with preclinical MRI and dynamic 18F-FDG and 18FFDOPA PET/CT at week 4 on separate, contiguous days, whereas the week 3 treated group was longitudinally imaged weekly for 3 wk. Metabolic tumor volume, total lesion avidity, SUVmax, and total uptake were calculated for both tracers. Immunohistochemistry was performed on representative tissue from all groups for LAT1 and glucose transporter 1 (GLUT1) expression. Results: Melphalan therapy induced a statistically significant reduction in lesion avidity and uptake for both 18F-FDG and 18F-FDOPA. There was no visible effect on GLUT1 expression, but LAT1 density increased in the week 2 treated group. Longitudinal imaging of the week 3 treated group showed variable changes in 18F-FDG and 18F-FDOPA uptake, with an increase in 18F-FDOPA lesion avidity in the second week relative to baseline. LAT1 and GLUT1 surface density in the untreated and week 3 treated groups were qualitatively similar. Conclusion: 18F-FDOPA PET/CT complemented 18F-FDG PET/CT in imaging melphalan therapy response in preclinical extramedullary MM. 18F-FDOPA uptake was linked to LAT1 expression and melphalan response, with longitudinal imaging suggesting stabilization of LAT1 levels and melphalan tumor cytotoxicity. Future work will explore additional MM cell lines with heterogeneous LAT1 expression and response to melphalan therapy.
AB - Multiple myeloma (MM) is a debilitating neoplasm of terminally differentiated plasma B cells that resulted in over 13,000 deaths in 2017 alone. Combination therapies involving melphalan, a smallmolecule DNA alkylating agent, are commonly prescribed to patients with relapsed or refractory MM, necessitating the stratification of responding patients to minimize toxicities and improve quality of life. Here, we evaluated the use of 3,4-dihydroxy-6-18F-fluoro-Lphenylalanine (18F-FDOPA), a clinically available PET radiotracer with specificity to the L-type amino acid transporter 1 (LAT1), which also mediates melphalan uptake, for imaging melphalan therapy response in a preclinical immunocompetent model of MM. Methods: C57BL/KaLwRij mice were implanted subcutaneously with unilateral murine green fluorescent protein-expressing 5TGM1 tumors and divided into 3 independent groups: untreated, treated beginning week 2 after tumor implantation, and treated beginning week 3 after tumor implantation. The untreated and week 2 treated groups were imaged with preclinical MRI and dynamic 18F-FDG and 18FFDOPA PET/CT at week 4 on separate, contiguous days, whereas the week 3 treated group was longitudinally imaged weekly for 3 wk. Metabolic tumor volume, total lesion avidity, SUVmax, and total uptake were calculated for both tracers. Immunohistochemistry was performed on representative tissue from all groups for LAT1 and glucose transporter 1 (GLUT1) expression. Results: Melphalan therapy induced a statistically significant reduction in lesion avidity and uptake for both 18F-FDG and 18F-FDOPA. There was no visible effect on GLUT1 expression, but LAT1 density increased in the week 2 treated group. Longitudinal imaging of the week 3 treated group showed variable changes in 18F-FDG and 18F-FDOPA uptake, with an increase in 18F-FDOPA lesion avidity in the second week relative to baseline. LAT1 and GLUT1 surface density in the untreated and week 3 treated groups were qualitatively similar. Conclusion: 18F-FDOPA PET/CT complemented 18F-FDG PET/CT in imaging melphalan therapy response in preclinical extramedullary MM. 18F-FDOPA uptake was linked to LAT1 expression and melphalan response, with longitudinal imaging suggesting stabilization of LAT1 levels and melphalan tumor cytotoxicity. Future work will explore additional MM cell lines with heterogeneous LAT1 expression and response to melphalan therapy.
KW - F-FDG PET
KW - F-FDOPA PET
KW - Melphalan therapy response
KW - Multiple myeloma
UR - http://www.scopus.com/inward/record.url?scp=85054059677&partnerID=8YFLogxK
U2 - 10.2967/jnumed.118.208744
DO - 10.2967/jnumed.118.208744
M3 - Article
C2 - 29700126
AN - SCOPUS:85054059677
SN - 0161-5505
VL - 59
SP - 1551
EP - 1557
JO - Journal of Nuclear Medicine
JF - Journal of Nuclear Medicine
IS - 10
ER -