TY - JOUR
T1 - IL-22 contributes to TGF-β1-mediated epithelial-mesenchymal transition in asthmatic bronchial epithelial cells
AU - Johnson, Jill R.
AU - Nishioka, Michiyoshi
AU - Chakir, Jamila
AU - Risse, Paul André
AU - Almaghlouth, Ibrahim
AU - Bazarbashi, Ahmad N.
AU - Plante, Sophie
AU - Martin, James G.
AU - Eidelman, David
AU - Hamid, Qutayba
N1 - Funding Information:
The technical assistance of Fazila Chouiali is gratefully acknowledged. The authors also thank Dr. Michel Laviolette for performing the bronchoscopies and Sabrina Biardel from the Tissue Bank of the Respiratory Health Network of the FRSQ, Laval site. Financial support for this study was provided by the Richard and Edith Strauss Canada Foundation and the Canadian Institutes for Health Research. This study was financially supported by the Strauss Foundation and the Canadian Institutes for Health Research.
PY - 2013/11/1
Y1 - 2013/11/1
N2 - Background: Allergic asthma is characterized by airway inflammation in response to antigen exposure, leading to airway remodeling and lung dysfunction. Epithelial-mesenchymal transition (EMT) may play a role in airway remodeling through the acquisition of a mesenchymal phenotype in airway epithelial cells. TGF-β1 is known to promote EMT; however, other cytokines expressed in severe asthma with extensive remodeling, such as IL-22, may also contribute to this process. In this study, we evaluated the contribution of IL-22 to EMT in primary bronchial epithelial cells from healthy and asthmatic subjects.Methods: Primary bronchial epithelial cells were isolated from healthy subjects, mild asthmatics and severe asthmatics (n=5 patients per group). The mRNA and protein expression of epithelial and mesenchymal cell markers and EMT-associated transcription factors was evaluated following stimulation with TGF-β1, IL-22 and TGF-β1+IL-22.Results: Primary bronchial epithelial cells stimulated with TGF-β1 underwent EMT, demonstrated by decreased expression of epithelial markers (E-cadherin and MUC5AC) and increased expression of mesenchymal markers (N-cadherin and vimentin) and EMT-associated transcription factors. IL-22 alone had no effect on epithelial or mesenchymal gene expression. However, IL-22+TGF-β1 promoted the expression of some EMT transcription factors (Snail1 and Zeb1) and led to a more profound cadherin shift, but only in cells obtained from severe asthmatics.Conclusion: The impact of IL-22 on airway epithelial cells depends on the cytokine milieu and the clinical phenotype of the patient. Further studies are required to determine the molecular mechanism of IL-22 and TGF-β1 cooperativity in driving EMT in primary human bronchial epithelial cells.
AB - Background: Allergic asthma is characterized by airway inflammation in response to antigen exposure, leading to airway remodeling and lung dysfunction. Epithelial-mesenchymal transition (EMT) may play a role in airway remodeling through the acquisition of a mesenchymal phenotype in airway epithelial cells. TGF-β1 is known to promote EMT; however, other cytokines expressed in severe asthma with extensive remodeling, such as IL-22, may also contribute to this process. In this study, we evaluated the contribution of IL-22 to EMT in primary bronchial epithelial cells from healthy and asthmatic subjects.Methods: Primary bronchial epithelial cells were isolated from healthy subjects, mild asthmatics and severe asthmatics (n=5 patients per group). The mRNA and protein expression of epithelial and mesenchymal cell markers and EMT-associated transcription factors was evaluated following stimulation with TGF-β1, IL-22 and TGF-β1+IL-22.Results: Primary bronchial epithelial cells stimulated with TGF-β1 underwent EMT, demonstrated by decreased expression of epithelial markers (E-cadherin and MUC5AC) and increased expression of mesenchymal markers (N-cadherin and vimentin) and EMT-associated transcription factors. IL-22 alone had no effect on epithelial or mesenchymal gene expression. However, IL-22+TGF-β1 promoted the expression of some EMT transcription factors (Snail1 and Zeb1) and led to a more profound cadherin shift, but only in cells obtained from severe asthmatics.Conclusion: The impact of IL-22 on airway epithelial cells depends on the cytokine milieu and the clinical phenotype of the patient. Further studies are required to determine the molecular mechanism of IL-22 and TGF-β1 cooperativity in driving EMT in primary human bronchial epithelial cells.
UR - http://www.scopus.com/inward/record.url?scp=84886743117&partnerID=8YFLogxK
U2 - 10.1186/1465-9921-14-118
DO - 10.1186/1465-9921-14-118
M3 - Article
C2 - 24283210
AN - SCOPUS:84886743117
SN - 1465-9921
VL - 14
JO - Respiratory Research
JF - Respiratory Research
IS - 1
M1 - 118
ER -