Identifying Disruptions in Intrinsic Brain Dynamics due to Severe Brain Injury

Sina Khanmohammadi, Terranee T. Kummer, Shinung Ching

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recent studies suggest that disruptions in resting state functional connectivity - a measure of stationary statistical association between brain regions - can be used as an objective marker of brain injury. However, fewer characterizations have examined the disruption of intrinsic brain dynamics after brain injury. Here, we examine this issue using electroencephalo-graphic (EEG) data from brain-injured patients, together with a control analysis wherein we quantify the effect of the injury on the ability of intrinsic event responses to traverse their respective state spaces. More specifically, the lability of intrinsically evoked brain activity was assessed by collapsing three sigma event responses in all channels of the obtained EEG signals into a low-dimensional space. The directional derivative of these responses was then used to assay the extent to which brain activity reaches low-variance subspaces. Our findings suggest that intrinsic dynamics extracted from resting state EEG signals can differentiate various levels of consciousness in severe cases of coma. More specifically the cost of moving from one state to another in the state-space trajectories of the underlying dynamics becomes lower as the level of consciousness of patients deteriorates.

Original languageEnglish
Title of host publicationConference Record of 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017
EditorsMichael B. Matthews
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages344-348
Number of pages5
ISBN (Electronic)9781538618233
DOIs
StatePublished - Apr 10 2018
Event51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017 - Pacific Grove, United States
Duration: Oct 29 2017Nov 1 2017

Publication series

NameConference Record of 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017
Volume2017-October

Conference

Conference51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017
CountryUnited States
CityPacific Grove
Period10/29/1711/1/17

Fingerprint Dive into the research topics of 'Identifying Disruptions in Intrinsic Brain Dynamics due to Severe Brain Injury'. Together they form a unique fingerprint.

Cite this