TY - JOUR
T1 - Identification of novel TGF-β regulated genes with pro-migratory roles
AU - Liu, Qi
AU - Borcherding, Nicholas
AU - Shao, Peng
AU - Cao, Huojun
AU - Zhang, Weizhou
AU - Qi, Hank Heng
N1 - Publisher Copyright:
© 2019
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Transforming growth factor-β (TGF-β) signaling plays fundamental roles in the development and homeostasis of somatic cells. Dysregulated TGF-β signaling contributes to cancer progression and relapse to therapies by inducing epithelial-to-mesenchymal transition (EMT), enriching cancer stem cells, and promoting immunosuppression. Although many TGF-β-regulated genes have been identified, only a few datasets were obtained by next-generation sequencing. In this study, we performed RNA-sequencing analysis of MCF10A cells and identified 1166 genes that were upregulated and 861 genes that were downregulated by TGF-β. Gene set enrichment analysis revealed that focal adhesion and metabolic pathways were the top enriched pathways of the up- and downregulated genes, respectively. Genes in these pathways also possess significant predictive value for renal cancers. Moreover, we confirmed that TGF-β induced expression of MICAL1 and 2, and the histone demethylase, KDM7A, and revealed their regulatory roles on TGF-β-induced cell migration. We also show a critical effect of KDM7A in regulating the acetylation of H3K27 on TGF-β-induced genes. In sum, this study identified novel effectors that mediate the pro-migratory role of TGF-β signaling, paving the way for future studies that investigate the function of MICAL family members in cancer and the novel epigenetic mechanisms downstream TGF-β signaling.
AB - Transforming growth factor-β (TGF-β) signaling plays fundamental roles in the development and homeostasis of somatic cells. Dysregulated TGF-β signaling contributes to cancer progression and relapse to therapies by inducing epithelial-to-mesenchymal transition (EMT), enriching cancer stem cells, and promoting immunosuppression. Although many TGF-β-regulated genes have been identified, only a few datasets were obtained by next-generation sequencing. In this study, we performed RNA-sequencing analysis of MCF10A cells and identified 1166 genes that were upregulated and 861 genes that were downregulated by TGF-β. Gene set enrichment analysis revealed that focal adhesion and metabolic pathways were the top enriched pathways of the up- and downregulated genes, respectively. Genes in these pathways also possess significant predictive value for renal cancers. Moreover, we confirmed that TGF-β induced expression of MICAL1 and 2, and the histone demethylase, KDM7A, and revealed their regulatory roles on TGF-β-induced cell migration. We also show a critical effect of KDM7A in regulating the acetylation of H3K27 on TGF-β-induced genes. In sum, this study identified novel effectors that mediate the pro-migratory role of TGF-β signaling, paving the way for future studies that investigate the function of MICAL family members in cancer and the novel epigenetic mechanisms downstream TGF-β signaling.
KW - Epigenetics
KW - KDM7A/JHDM1D
KW - MICAL1
KW - Migration
KW - TGF-β
UR - http://www.scopus.com/inward/record.url?scp=85073114160&partnerID=8YFLogxK
U2 - 10.1016/j.bbadis.2019.165537
DO - 10.1016/j.bbadis.2019.165537
M3 - Article
C2 - 31449970
AN - SCOPUS:85073114160
SN - 0925-4439
VL - 1865
JO - Biochimica et Biophysica Acta - Molecular Basis of Disease
JF - Biochimica et Biophysica Acta - Molecular Basis of Disease
IS - 12
M1 - 165537
ER -