Identification of histone H3 lysine 36 acetylation as a highly conserved histone modification

Stephanie A. Morris, Bhargavi Rao, Benjamin A. Garcia, Sandra B. Hake, Robert L. Diaz, Jeffrey Shabanowitz, Donald F. Hunt, C. David Allis, Jason D. Lieb, Brian D. Strahl

Research output: Contribution to journalArticlepeer-review

116 Scopus citations


Histone lysine acetylation is a major mechanism by which cells regulate the structure and function of chromatin, and new sites of acetylation continue to be discovered. Here we identify and characterize histone H3K36 acetylation (H3K36ac). By mass spectrometric analyses of H3 purified from Tetrahymena thermophila and Saccharomyces cerevisiae (yeast), we find that H3K36 can be acetylated or methylated. Using an antibody specific to H3K36ac, we show that this modification is conserved in mammals. In yeast, genome-wide ChIP-chip experiments show that H3K36ac is localized predominantly to the promoters of RNA polymerase II-transcribed genes, a pattern inversely related to that of H3K36 methylation. The pattern of H3K36ac localization is similar to that of other sites of H3 acetylation, including H3K9ac and H3K14ac. Using histone acetyltransferase complexes purified from yeast, we show that the Gcn5-containing SAGA complex that regulates transcription specifically acetylates H3K36 in vitro. Deletion of GCN5 completely abolishes H3K36ac in vivo. These data expand our knowledge of the genomic targets of Gcn5, show H3K36ac is highly conserved, and raise the intriguing possibility that the transition between H3K36ac and H3K36me acts as an "acetyl/methyl switch" governing chromatin function along transcription units.

Original languageEnglish
Pages (from-to)7632-7640
Number of pages9
JournalJournal of Biological Chemistry
Issue number10
StatePublished - Mar 2 2007


Dive into the research topics of 'Identification of histone H3 lysine 36 acetylation as a highly conserved histone modification'. Together they form a unique fingerprint.

Cite this