Identification of a retinoic acid-dependent haemogenic endothelial progenitor from human pluripotent stem cells

Stephanie A. Luff, J. Philip Creamer, Sara Valsoni, Carissa Dege, Rebecca Scarfò, Analisa Dacunto, Sara Cascione, Lauren N. Randolph, Eleonora Cavalca, Ivan Merelli, Samantha A. Morris, Andrea Ditadi, Christopher M. Sturgeon

Research output: Contribution to journalArticlepeer-review

Abstract

The generation of haematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) is a major goal for regenerative medicine. During embryonic development, HSCs derive from haemogenic endothelium (HE) in a NOTCH- and retinoic acid (RA)-dependent manner. Although a WNT-dependent (WNTd) patterning of nascent hPSC mesoderm specifies clonally multipotent intra-embryonic-like HOXA+ definitive HE, this HE is functionally unresponsive to RA. Here we show that WNTd mesoderm, before HE specification, is actually composed of two distinct KDR+ CD34neg populations. CXCR4negCYP26A1+ mesoderm gives rise to HOXA+ multilineage definitive HE in an RA-independent manner, whereas CXCR4+ALDH1A2+ mesoderm gives rise to HOXA+ multilineage definitive HE in a stage-specific, RA-dependent manner. Furthermore, both RA-independent (RAi) and RA-dependent (RAd) HE harbour transcriptional similarity to distinct populations found in the early human embryo, including HSC-competent HE. This revised model of human haematopoietic development provides essential resolution to the regulation and origins of the multiple waves of haematopoiesis. These insights provide the basis for the generation of specific haematopoietic populations, including the de novo specification of HSCs.

Original languageEnglish
Pages (from-to)616-624
Number of pages9
JournalNature Cell Biology
Volume24
Issue number5
DOIs
StatePublished - May 2022

Fingerprint

Dive into the research topics of 'Identification of a retinoic acid-dependent haemogenic endothelial progenitor from human pluripotent stem cells'. Together they form a unique fingerprint.

Cite this