TY - GEN
T1 - Identification and evaluation of weak community structures in networks
AU - Ruan, Jianhua
AU - Zhang, Weixiong
PY - 2006
Y1 - 2006
N2 - Identifying intrinsic structures in large networks is a fundamental problem in many fields, such as engineering, social science and biology. In this paper, we are concerned with communities, which are densely connected sub-graphs in a network, and address two critical issues for finding community structures from large experimental data. First, most existing network clustering methods assume sparse networks and networks with strong community structures. In contrast, we consider sparse and dense networks with weak community structures. We introduce a set of simple operations that capture local neighborhood information of a node to identify weak communities. Second, we consider the issue of automatically determining the most appropriate number of communities, a crucial problem for all clustering methods. This requires to properly evaluate the quality of community structures. Built atop a function for network cluster evaluation by Newman and Girvan, we extend their work to weighted graphs. We have evaluated our methods on many networks of known structures, and applied them to analyze a collaboration network and a genetic network. The results showed that our methods can find superb community structures and correct numbers of communities. Comparing to the existing approaches, our methods performed significantly better on networks with weak community structures and equally well on networks with strong community structures.
AB - Identifying intrinsic structures in large networks is a fundamental problem in many fields, such as engineering, social science and biology. In this paper, we are concerned with communities, which are densely connected sub-graphs in a network, and address two critical issues for finding community structures from large experimental data. First, most existing network clustering methods assume sparse networks and networks with strong community structures. In contrast, we consider sparse and dense networks with weak community structures. We introduce a set of simple operations that capture local neighborhood information of a node to identify weak communities. Second, we consider the issue of automatically determining the most appropriate number of communities, a crucial problem for all clustering methods. This requires to properly evaluate the quality of community structures. Built atop a function for network cluster evaluation by Newman and Girvan, we extend their work to weighted graphs. We have evaluated our methods on many networks of known structures, and applied them to analyze a collaboration network and a genetic network. The results showed that our methods can find superb community structures and correct numbers of communities. Comparing to the existing approaches, our methods performed significantly better on networks with weak community structures and equally well on networks with strong community structures.
UR - http://www.scopus.com/inward/record.url?scp=33750719615&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:33750719615
SN - 1577352815
SN - 9781577352815
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 470
EP - 475
BT - Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
T2 - 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
Y2 - 16 July 2006 through 20 July 2006
ER -