TY - JOUR
T1 - Identification and characterization of MCM3 as a kelch-like ECH-associated protein 1 (KEAP1) substrate
AU - Mulvaney, Kathleen M.
AU - Matson, Jacob P.
AU - Siesser, Priscila F.
AU - Tamir, Tigist Y.
AU - Goldfarb, Dennis
AU - Jacobs, Timothy M.
AU - Cloer, Erica W.
AU - Harrison, Joseph S.
AU - Vaziri, Cyrus
AU - Cook, Jeanette G.
AU - Major, Michael B.
N1 - Funding Information:
This work was supported by a grant from the Sidney Kimmel Cancer Foundation (to M. B. M.), by American Cancer Society Grant RSG-14-068-01-TBE (to M. B. M.), by National Science Foundation Graduate Research Fellowship DGE-1144081 (to J. P. M.), and by NIGMS, National Institutes of Health Grant R01GM102413 (to J. G. C.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Publisher Copyright:
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2016/11/4
Y1 - 2016/11/4
N2 - KEAP1 is a substrate adaptor protein for a CUL3-based E3 ubiquitin ligase. Ubiquitylation and degradation of the antioxidant transcription factor NRF2 is considered the primary function of KEAP1; however, few other KEAP1 substrates have been identified. Because KEAP1 is altered in a number of human pathologies and has been proposed as a potential therapeutic target therein, we sought to better understand KEAP1 through systematic identification of its substrates. Toward this goal, we combined parallel affinity capture proteomics and candidatebased approaches. Substrate-trapping proteomics yielded NRF2 and the related transcription factor NRF1 as KEAP1 substrates. Our targeted investigation of KEAP1-interacting proteins revealed MCM3, an essential subunit of the replicative DNA helicase, as a new substrate. We show that MCM3 is ubiquitylated by the KEAP1-CUL3-RBX1 complex in cells and in vitro. Using ubiquitin remnant profiling, we identify the sites of KEAP1-dependent ubiquitylation in MCM3, and these sites are on predicted exposed surfaces of the MCM2-7 complex. Unexpectedly, we determined that KEAP1 does not regulate total MCM3 protein stability or subcellular localization. Our analysis of a KEAP1 targeting motif in MCM3 suggests that MCM3 is a point of direct contact between KEAP1 and the MCMhexamer. Moreover, KEAP1 associates with chromatin in a cell cycle-dependent fashion with kinetics similar to the MCM2-7 complex. KEAP1 is thus poised to affect MCM2-7 dynamics or function rather than MCM3 abundance. Together, these data establish newfunctions for KEAP1within the nucleusandidentifyMCM3as a novel substrate of the KEAP1-CUL3-RBX1 E3 ligase.
AB - KEAP1 is a substrate adaptor protein for a CUL3-based E3 ubiquitin ligase. Ubiquitylation and degradation of the antioxidant transcription factor NRF2 is considered the primary function of KEAP1; however, few other KEAP1 substrates have been identified. Because KEAP1 is altered in a number of human pathologies and has been proposed as a potential therapeutic target therein, we sought to better understand KEAP1 through systematic identification of its substrates. Toward this goal, we combined parallel affinity capture proteomics and candidatebased approaches. Substrate-trapping proteomics yielded NRF2 and the related transcription factor NRF1 as KEAP1 substrates. Our targeted investigation of KEAP1-interacting proteins revealed MCM3, an essential subunit of the replicative DNA helicase, as a new substrate. We show that MCM3 is ubiquitylated by the KEAP1-CUL3-RBX1 complex in cells and in vitro. Using ubiquitin remnant profiling, we identify the sites of KEAP1-dependent ubiquitylation in MCM3, and these sites are on predicted exposed surfaces of the MCM2-7 complex. Unexpectedly, we determined that KEAP1 does not regulate total MCM3 protein stability or subcellular localization. Our analysis of a KEAP1 targeting motif in MCM3 suggests that MCM3 is a point of direct contact between KEAP1 and the MCMhexamer. Moreover, KEAP1 associates with chromatin in a cell cycle-dependent fashion with kinetics similar to the MCM2-7 complex. KEAP1 is thus poised to affect MCM2-7 dynamics or function rather than MCM3 abundance. Together, these data establish newfunctions for KEAP1within the nucleusandidentifyMCM3as a novel substrate of the KEAP1-CUL3-RBX1 E3 ligase.
UR - http://www.scopus.com/inward/record.url?scp=84994376713&partnerID=8YFLogxK
U2 - 10.1074/jbc.M116.729418
DO - 10.1074/jbc.M116.729418
M3 - Article
C2 - 27621311
AN - SCOPUS:84994376713
SN - 0021-9258
VL - 291
SP - 23719
EP - 23733
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 45
ER -