TY - JOUR
T1 - Human phagocytes employ the myeloperoxidase-hydrogen peroxide system to synthesize dityrosine, trityrosine, pulcherosine, and isodityrosine by a tyrosyl radical-dependent pathway
AU - Jacob, Jason S.
AU - Cistola, David P.
AU - Hsu, Fong Fu
AU - Muzaffar, Samar
AU - Mueller, Dianne M.
AU - Hazen, Stanley L.
AU - Heinecke, Jay W.
PY - 1996
Y1 - 1996
N2 - Myeloperoxidase, a heme protein secreted by activated phagocytes, may be a catalyst for lipoprotein oxidation in vivo. Active myeloperoxidase is a component of human atherosclerotic lesions, and atherosclerotic tissue exhibits selective enrichment of protein dityrosine cross-links, a well characterized product of myeloperoxidase. Tyrosylation of lipoproteins with peroxidase- generated tyrosyl radical generates multiple protein-bound tyrosine oxidation products in addition to dityrosine. The structural characterization of these products would thus serve as an important step in determining the role of myeloperoxidase in lipoprotein oxidation in the artery wall. We now report the identification and characterization of four distinct tyrosyl radical addition products generated by human phagocytes. Activated neutrophils synthesized three major fluorescent products from L-tyrosine; on reverse phase HPLC, each compound coeluted with fluorescent oxidation products formed by myeloperoxidase. We purified the oxidation products to apparent homogeneity by cation and anion exchange chromatographies and identified the compounds as dityrosine (3,3'- dityrosine), trityrosine (3,3',5',3''-trityrosine) and pulcherosine (5-[4''- (2-carboxy-2-aminoethyl)phenoxy]3,3'-dityrosine) by high resolution NMR spectroscopy and mass spectrometry. Additionally, we have found that dityrosine is a precursor to trityrosine, but not pulcherosine. In a search for a precursor to pulcherosine, we identified isodityrosine (3-[4'-(2-carboxy-2- aminoethyl)phenoxy]tyrosine), a non-fluorescent product of L-tyrosine oxidation by human phagocytes. Our results represent the first identification of this family of tyrosyl radical addition products in a mammalian system. Moreover, these compounds may serve as markers specific for tyrosyl radical-mediated oxidative damage in atherosclerosis and other inflammatory conditions.
AB - Myeloperoxidase, a heme protein secreted by activated phagocytes, may be a catalyst for lipoprotein oxidation in vivo. Active myeloperoxidase is a component of human atherosclerotic lesions, and atherosclerotic tissue exhibits selective enrichment of protein dityrosine cross-links, a well characterized product of myeloperoxidase. Tyrosylation of lipoproteins with peroxidase- generated tyrosyl radical generates multiple protein-bound tyrosine oxidation products in addition to dityrosine. The structural characterization of these products would thus serve as an important step in determining the role of myeloperoxidase in lipoprotein oxidation in the artery wall. We now report the identification and characterization of four distinct tyrosyl radical addition products generated by human phagocytes. Activated neutrophils synthesized three major fluorescent products from L-tyrosine; on reverse phase HPLC, each compound coeluted with fluorescent oxidation products formed by myeloperoxidase. We purified the oxidation products to apparent homogeneity by cation and anion exchange chromatographies and identified the compounds as dityrosine (3,3'- dityrosine), trityrosine (3,3',5',3''-trityrosine) and pulcherosine (5-[4''- (2-carboxy-2-aminoethyl)phenoxy]3,3'-dityrosine) by high resolution NMR spectroscopy and mass spectrometry. Additionally, we have found that dityrosine is a precursor to trityrosine, but not pulcherosine. In a search for a precursor to pulcherosine, we identified isodityrosine (3-[4'-(2-carboxy-2- aminoethyl)phenoxy]tyrosine), a non-fluorescent product of L-tyrosine oxidation by human phagocytes. Our results represent the first identification of this family of tyrosyl radical addition products in a mammalian system. Moreover, these compounds may serve as markers specific for tyrosyl radical-mediated oxidative damage in atherosclerosis and other inflammatory conditions.
UR - http://www.scopus.com/inward/record.url?scp=0029808085&partnerID=8YFLogxK
U2 - 10.1074/jbc.271.33.19950
DO - 10.1074/jbc.271.33.19950
M3 - Article
C2 - 8702710
AN - SCOPUS:0029808085
SN - 0021-9258
VL - 271
SP - 19950
EP - 19956
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 33
ER -