Human phagocytes employ the myeloperoxidase-hydrogen peroxide system to synthesize dityrosine, trityrosine, pulcherosine, and isodityrosine by a tyrosyl radical-dependent pathway

Jason S. Jacob, David P. Cistola, Fong Fu Hsu, Samar Muzaffar, Dianne M. Mueller, Stanley L. Hazen, Jay W. Heinecke

Research output: Contribution to journalArticlepeer-review

140 Scopus citations

Abstract

Myeloperoxidase, a heme protein secreted by activated phagocytes, may be a catalyst for lipoprotein oxidation in vivo. Active myeloperoxidase is a component of human atherosclerotic lesions, and atherosclerotic tissue exhibits selective enrichment of protein dityrosine cross-links, a well characterized product of myeloperoxidase. Tyrosylation of lipoproteins with peroxidase- generated tyrosyl radical generates multiple protein-bound tyrosine oxidation products in addition to dityrosine. The structural characterization of these products would thus serve as an important step in determining the role of myeloperoxidase in lipoprotein oxidation in the artery wall. We now report the identification and characterization of four distinct tyrosyl radical addition products generated by human phagocytes. Activated neutrophils synthesized three major fluorescent products from L-tyrosine; on reverse phase HPLC, each compound coeluted with fluorescent oxidation products formed by myeloperoxidase. We purified the oxidation products to apparent homogeneity by cation and anion exchange chromatographies and identified the compounds as dityrosine (3,3'- dityrosine), trityrosine (3,3',5',3''-trityrosine) and pulcherosine (5-[4''- (2-carboxy-2-aminoethyl)phenoxy]3,3'-dityrosine) by high resolution NMR spectroscopy and mass spectrometry. Additionally, we have found that dityrosine is a precursor to trityrosine, but not pulcherosine. In a search for a precursor to pulcherosine, we identified isodityrosine (3-[4'-(2-carboxy-2- aminoethyl)phenoxy]tyrosine), a non-fluorescent product of L-tyrosine oxidation by human phagocytes. Our results represent the first identification of this family of tyrosyl radical addition products in a mammalian system. Moreover, these compounds may serve as markers specific for tyrosyl radical-mediated oxidative damage in atherosclerosis and other inflammatory conditions.

Original languageEnglish
Pages (from-to)19950-19956
Number of pages7
JournalJournal of Biological Chemistry
Volume271
Issue number33
DOIs
StatePublished - 1996

Fingerprint

Dive into the research topics of 'Human phagocytes employ the myeloperoxidase-hydrogen peroxide system to synthesize dityrosine, trityrosine, pulcherosine, and isodityrosine by a tyrosyl radical-dependent pathway'. Together they form a unique fingerprint.

Cite this