Human gene therapy: Present and future

Mark A. Kay, Kathy Parker Ponder, Savio L.C. Woo

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


The hematopoietic system and the liver are two primary target organs for attempting somatic gene therapy of hereditary deficiencies. Several leading laboratories have recently been able to demonstrate that bone marrow cells from rodents and non-human primates can be successfully transduced with foreign genes, resulting in the functional expression of these genes in culture. The genetically reconstituted cells can subsequently be transplanted into X-irradiated recipients, and expression of the transduced genes is observed in the recipients for more than 6 months. Subsequently, gene transfer into peripheral T-lymphocytes in humans has been attempted, and the clinical trials are currently in progress. The liver is the other major organ under intensive investigation. Primary hepatocytes can be isolated from rodents, rabbits, and dogs, and successfully transduced with recombinant retroviruses. After autologous transplantation, long term survival of the engrafted cells in vivo has been observed. More recently, it has been shown that human hepatocytes can also be efficiently transduced with recombinant retroviruses. These experimental results have laid the foundation for somatic gene therapy of hereditary deficiencies in humans in the future.

Original languageEnglish
Pages (from-to)83-93
Number of pages11
JournalBreast Cancer Research and Treatment
Issue number2
StatePublished - Jun 1 1992


  • bone marrow cells
  • gene therapy
  • hepatocytes
  • recombinant retroviruses
  • transduction


Dive into the research topics of 'Human gene therapy: Present and future'. Together they form a unique fingerprint.

Cite this