TY - JOUR
T1 - Human cord blood progenitors with high aldehyde dehydrogenase activity improve vascular density in a model of acute myocardial infarction
AU - Sondergaard, Claus S.
AU - Hess, David A.
AU - Maxwell, Dustin J.
AU - Weinheimer, Carla
AU - Rosová, Ivana
AU - Creer, Michael H.
AU - Piwnica-Worms, David
AU - Kovacs, Attila
AU - Pedersen, Lene
AU - Nolta, Jan A.
N1 - Funding Information:
We thank the St. Louis cord blood bank for providing donated, anonymized umbilical cord blood samples which had failed to meet the criteria for public banking. This work was supported by the Danish Medical Research Council (Grant 22-03-0254 to LP), the Danish Heart Association (Grant 06-10-B41-A1219-22332 to LP), The UC Davis Stem Cell program start-up funding from the Deans’ Office (JAN) and the Department of Surgery (CSS), UC Davis Health Sciences Campus, and the National Institutes of Health (NIH), National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK #2R01DK61848 and 2R01DK53041 (JAN)), and National Heart, Lung and Blood Institute (NHLBI #RO1HL073256 (JAN). Funding bodies supported salaries, equipment, mice and supplies needed for the collection and analysis of the data.
PY - 2010/3/9
Y1 - 2010/3/9
N2 - Human stem cells from adult sources have been shown to contribute to the regeneration of muscle, liver, heart, and vasculature. The mechanisms by which this is accomplished are, however, still not well understood. We tested the engraftment and regenerative potential of human umbilical cord blood-derived ALDHhiLin-, and ALDHloLin- cells following transplantation to NOD/SCID or NOD/SCID β2m null mice with experimentally induced acute myocardial infarction. We used combined nanoparticle labeling and whole organ fluorescent imaging to detect human cells in multiple organs 48 hours post transplantation. Engraftment and regenerative effects of cell treatment were assessed four weeks post transplantation. We found that ALDHhiLin- stem cells specifically located to the site of injury 48 hours post transplantation and engrafted the infarcted heart at higher frequencies than ALDHloLin- committed progenitor cells four weeks post transplantation. We found no donor derived cardiomyocytes and few endothelial cells of donor origin. Cell treatment was not associated with any detectable functional improvement at the four week endpoint. There was, however, a significant increase in vascular density in the central infarct zone of ALDHhiLin- cell-treated mice, as compared to PBS and ALDHloLin- cell-treated mice.Conclusions: Our data indicate that adult human stem cells do not become a significant part of the regenerating tissue, but rapidly home to and persist only temporarily at the site of hypoxic injury to exert trophic effects on tissue repair thereby enhancing vascular recovery.
AB - Human stem cells from adult sources have been shown to contribute to the regeneration of muscle, liver, heart, and vasculature. The mechanisms by which this is accomplished are, however, still not well understood. We tested the engraftment and regenerative potential of human umbilical cord blood-derived ALDHhiLin-, and ALDHloLin- cells following transplantation to NOD/SCID or NOD/SCID β2m null mice with experimentally induced acute myocardial infarction. We used combined nanoparticle labeling and whole organ fluorescent imaging to detect human cells in multiple organs 48 hours post transplantation. Engraftment and regenerative effects of cell treatment were assessed four weeks post transplantation. We found that ALDHhiLin- stem cells specifically located to the site of injury 48 hours post transplantation and engrafted the infarcted heart at higher frequencies than ALDHloLin- committed progenitor cells four weeks post transplantation. We found no donor derived cardiomyocytes and few endothelial cells of donor origin. Cell treatment was not associated with any detectable functional improvement at the four week endpoint. There was, however, a significant increase in vascular density in the central infarct zone of ALDHhiLin- cell-treated mice, as compared to PBS and ALDHloLin- cell-treated mice.Conclusions: Our data indicate that adult human stem cells do not become a significant part of the regenerating tissue, but rapidly home to and persist only temporarily at the site of hypoxic injury to exert trophic effects on tissue repair thereby enhancing vascular recovery.
UR - http://www.scopus.com/inward/record.url?scp=77951160193&partnerID=8YFLogxK
U2 - 10.1186/1479-5876-8-24
DO - 10.1186/1479-5876-8-24
M3 - Article
C2 - 20214792
AN - SCOPUS:77951160193
SN - 1479-5876
VL - 8
JO - Journal of Translational Medicine
JF - Journal of Translational Medicine
M1 - 24
ER -