Abstract
Procedures: Five healthy male subjects were imaged for 90 min following IV [18F]ASEM. Two subjects were scanned for the second time (test/retest; TRV). Mouse biodistribution of [18F]ASEM was carried out in CD1 mice injected with using human equivalent doses of DMXB-A, EVP-6124, and varenicline to block specific binding.
Purpose: Using the α7-nAChR radiotracer, [18F]ASEM, we present the first successful human positron emission tomography (PET) studies. Rodent occupancy with three clinically employed α7-nAChR drugs confirms the specificity of the radiotracer.
Results: [18F]ASEM readily entered the brain and peaked at 15 min post-injection with reversible kinetics and a peak %SUV of about 400 %. The regional human brain distribution of [18F]ASEM matched previous in vitro data and baboon PET results. The precuneus, parietal, occipital, cingulate cortexes, putamen, and thalamus showed high values of distribution volume (>20 ml/ml) and binding potentials >1 with TRV averaged 10.8 ± 5.1 %. In mouse distribution studies, there was significant dose-dependent blockade in the mouse brain with DMXB-A as well as the other two α7-nAChR drugs.
Conclusions: The characteristics of [18F]ASEM are consistent with the ability to quantify α7-nAChR in the human brain. [18F]ASEM is suitable for imaging neuropsychiatric disorders and target engagement (receptor occupancy) of potential α7-nAChR drugs.
Original language | English |
---|---|
Pages (from-to) | 730-738 |
Number of pages | 9 |
Journal | Molecular Imaging and Biology |
Volume | 16 |
Issue number | 5 |
DOIs | |
State | Published - Oct 2014 |
Keywords
- Alpha-7
- DMXB-A
- GTS-21
- Nicotinic acetylcholine receptor
- PET brain imaging
- Radiotracer kinetic modeling
- Receptor occupancy
- Schizophrenia