Abstract

Accurate HPV genotyping is crucial in facilitating epidemiology studies, vaccine trials, and HPV-related cancer research. Contemporary HPV genotyping assays only detect < 25% of all known HPV genotypes and are not accurate for low-risk or mixed HPV genotypes. Current genomic HPV genotyping algorithms use a simple read-alignment and filtering strategy that has difficulty handling repeats and homology sequences. Therefore, we have developed an optimized expectation–maximization algorithm, designated HPV-EM, to address the ambiguities caused by repetitive sequencing reads. HPV-EM achieved 97–100% accuracy when benchmarked using cell line data and TCGA cervical cancer data. We also validated HPV-EM using DNA tiling data on an institutional cervical cancer cohort (96.5% accuracy). Using HPV-EM, we demonstrated HPV genotypic differences in recurrence and patient outcomes in cervical and head and neck cancers.

Original languageEnglish
Article number14340
JournalScientific reports
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2020

Fingerprint

Dive into the research topics of 'HPV-EM: an accurate HPV detection and genotyping EM algorithm'. Together they form a unique fingerprint.

Cite this