TY - JOUR
T1 - How well do covariates perform when adjusting for sampling bias in online COVID-19 research? Insights from multiverse analyses
AU - iCARE Study Team
AU - Joyal-Desmarais, Keven
AU - Stojanovic, Jovana
AU - Kennedy, Eric B.
AU - Enticott, Joanne C.
AU - Boucher, Vincent Gosselin
AU - Vo, Hung
AU - Košir, Urška
AU - Lavoie, Kim L.
AU - Bacon, Simon L.
AU - Vally, Zahir
AU - Granana, Nora
AU - Losada, Analía Verónica
AU - Boyle, Jacqueline
AU - Shawon, Shajedur Rahman
AU - Dawadi, Shrinkhala
AU - Teede, Helena
AU - Kautzky-Willer, Alexandra
AU - Dash, Arobindu
AU - Cornelio, Marilia Estevam
AU - Karsten, Marlus
AU - Matte, Darlan Lauricio
AU - Reichert, Felipe
AU - Abou-Setta, Ahmed
AU - Aaron, Shawn
AU - Alberga, Angela
AU - Barnett, Tracie
AU - Barone, Silvana
AU - Bélanger-Gravel, Ariane
AU - Bernard, Sarah
AU - Birch, Lisa Maureen
AU - Bondy, Susan
AU - Booij, Linda
AU - Da Silva, Roxane Borgès
AU - Bourbeau, Jean
AU - Burns, Rachel
AU - Campbell, Tavis
AU - Carlson, Linda
AU - Charbonneau, Étienne
AU - Corace, Kim
AU - Drouin, Olivier
AU - Ducharme, Francine
AU - Farhadloo, Mohsen
AU - Falk, Carl
AU - Fleet, Richard
AU - Fournier, Michel
AU - Garber, Gary
AU - Gauvin, Lise
AU - Gordon, Jennifer
AU - Grad, Roland
AU - Gupta, Samir
AU - Hellemans, Kim
AU - Herba, Catherine
AU - Hwang, Heungsun
AU - Jedwab, Jack
AU - Kakinami, Lisa
AU - Kim, Sunmee
AU - Liu, Joanne
AU - Norris, Colleen
AU - Pelaez, Sandra
AU - Pilote, Louise
AU - Poirier, Paul
AU - Presseau, Justin
AU - Puterman, Eli
AU - Rash, Joshua
AU - Ribeiro, Paula A.B.
AU - Sadatsafavi, Mohsen
AU - Chaudhuri, Paramita Saha
AU - Suarthana, Eva
AU - Tse, Sze Man
AU - Vallis, Michael
AU - Caceres, Nicolás Bronfman
AU - Ortiz, Manuel
AU - Repetto, Paula Beatriz
AU - Lemos-Hoyos, Mariantonia
AU - Kassianos, Angelos
AU - Rod, Naja Hulvej
AU - Beraneck, Mathieu
AU - Ninot, Gregory
AU - Ditzen, Beate
AU - Kubiak, Thomas
AU - Codjoe, Sam
AU - Kpobi, Lily
AU - Laar, Amos
AU - Skoura, Theodora
AU - Francis, Delfin Lovelina
AU - Devi, Naorem Kiranmala
AU - Meitei, Sanjenbam
AU - Nethan, Suzanne Tanya
AU - Pinto, Lancelot
AU - Saraswathy, Kallur Nava
AU - Tumu, Dheeraj
AU - Lestari, Silviana
AU - Wangge, Grace
AU - Byrne, Molly
AU - Durand, Hannah
AU - McSharry, Jennifer
AU - Meade, Oonagh
AU - Molloy, Gerry
AU - Noone, Chris
AU - Levine, Hagai
AU - Zaidman-Zait, Anat
AU - Boccia, Stefania
AU - Hoxhaj, Ilda
AU - Paduano, Stefania
AU - Raparelli, Valeria
AU - Zaçe, Drieda
AU - Aburub, Ala’S S.
AU - Akunga, Daniel
AU - Ayah, Richard
AU - Barasa, Chris
AU - Godia, Pamela Miloya
AU - Kimani-Murage, Elizabeth W.
AU - Mutuku, Nicholas
AU - Mwoma, Teresa
AU - Naanyu, Violet
AU - Nyamari, Jackim
AU - Oburu, Hildah
AU - Olenja, Joyce
AU - Ongore, Dismas
AU - Ziraba, Abdhalah
AU - Bandawe, Chiwoza
AU - Yim, Loh Siew
AU - Ajuwon, Ademola
AU - Shar, Nisar Ahmed
AU - Usmani, Bilal Ahmed
AU - Martínez, Rosario Mercedes Bartolini
AU - Creed-Kanashiro, Hilary
AU - Simão, Paula
AU - Rutayisire, Pierre Claver
AU - Bari, Abu Zeeshan
AU - Vojvodic, Katarina
AU - Nagyova, Iveta
AU - Bantjes, Jason
AU - Barnes, Brendon
AU - Coetzee, Bronwyne
AU - Khagee, Ashraf
AU - Mothiba, Tebogo
AU - Roomaney, Rizwana
AU - Swartz, Leslie
AU - Cho, Juhee
AU - Lee, Man gyeong
AU - Berman, Anne
AU - Stattin, Nouha Saleh
AU - Fischer, Susanne
AU - Hu, Debbie
AU - Kara, Yasin
AU - Şimşek, Ceprail
AU - Üzmezoğlu, Bilge
AU - Isunju, John Bosco
AU - Mugisha, James
AU - Byrne-Davis, Lucie
AU - Griffiths, Paula
AU - Hart, Joanne
AU - Johnson, Will
AU - Michie, Susan
AU - Paine, Nicola
AU - Petherick, Emily
AU - Sherar, Lauren
AU - Bilder, Robert M.
AU - Burg, Matthew
AU - Czajkowski, Susan
AU - Freedland, Ken
AU - Gorin, Sherri Sheinfeld
AU - Holman, Alison
AU - Lee, Jiyoung
AU - Lopez, Gilberto
AU - Naar, Sylvie
AU - Okun, Michele
AU - Powell, Lynda
AU - Pressman, Sarah
AU - Revenson, Tracey
AU - Ruiz, John
AU - Sivaram, Sudha
AU - Thrul, Johannes
AU - Trudel-Fitzgerald, Claudia
AU - Yohannes, Abehaw
AU - Navani, Rhea
AU - Ranakombu, Kushnan
AU - Neto, Daisuke Hayashi
AU - Ben-Porat, Tair
AU - Dragomir, Anda
AU - Gagnon-Hébert, Amandine
AU - Gemme, Claudia
AU - Jamil, Mahrukh
AU - Käfer, Lisa Maria
AU - Vieira, Ariany Marques
AU - Tasbih, Tasfia
AU - Woods, Robbie
AU - Yousefi, Reyhaneh
AU - Roslyakova, Tamila
AU - Priesterroth, Lilli
AU - Edelstein, Shirly
AU - Snir, Ruth
AU - Uri, Yifat
AU - Alyami, Mohsen
AU - Sanuade, Comfort
AU - Crescenzi, Olivia
AU - Warkentin, Kyle
AU - Grinko, Katya
AU - Angne, Lalita
N1 - Funding Information:
This work was supported by the Canadian Institutes of Health Research (CIHR: MM1-174903; MS3-173099; SMC-151518); the Canada Research Chairs Program (950-232522, Chair holder: Dr. Kim L. Lavoie); the Fonds de recherche du Québec—santé (FRQ-S: 251618; 34757); the Fonds de recherche du Québec – Société et culture (FRQSC: 2019-SE1-252541); and the Ministère de l'Économie et de l’Innovation du Québec (2020-2022-COVID-19-PSOv2a-51754). Study sponsors had no role in conducting the research.
Publisher Copyright:
© 2022, Springer Nature B.V.
PY - 2022/12
Y1 - 2022/12
N2 - COVID-19 research has relied heavily on convenience-based samples, which—though often necessary—are susceptible to important sampling biases. We begin with a theoretical overview and introduction to the dynamics that underlie sampling bias. We then empirically examine sampling bias in online COVID-19 surveys and evaluate the degree to which common statistical adjustments for demographic covariates successfully attenuate such bias. This registered study analysed responses to identical questions from three convenience and three largely representative samples (total N = 13,731) collected online in Canada within the International COVID-19 Awareness and Responses Evaluation Study (www.icarestudy.com). We compared samples on 11 behavioural and psychological outcomes (e.g., adherence to COVID-19 prevention measures, vaccine intentions) across three time points and employed multiverse-style analyses to examine how 512 combinations of demographic covariates (e.g., sex, age, education, income, ethnicity) impacted sampling discrepancies on these outcomes. Significant discrepancies emerged between samples on 73% of outcomes. Participants in the convenience samples held more positive thoughts towards and engaged in more COVID-19 prevention behaviours. Covariates attenuated sampling differences in only 55% of cases and increased differences in 45%. No covariate performed reliably well. Our results suggest that online convenience samples may display more positive dispositions towards COVID-19 prevention behaviours being studied than would samples drawn using more representative means. Adjusting results for demographic covariates frequently increased rather than decreased bias, suggesting that researchers should be cautious when interpreting adjusted findings. Using multiverse-style analyses as extended sensitivity analyses is recommended.
AB - COVID-19 research has relied heavily on convenience-based samples, which—though often necessary—are susceptible to important sampling biases. We begin with a theoretical overview and introduction to the dynamics that underlie sampling bias. We then empirically examine sampling bias in online COVID-19 surveys and evaluate the degree to which common statistical adjustments for demographic covariates successfully attenuate such bias. This registered study analysed responses to identical questions from three convenience and three largely representative samples (total N = 13,731) collected online in Canada within the International COVID-19 Awareness and Responses Evaluation Study (www.icarestudy.com). We compared samples on 11 behavioural and psychological outcomes (e.g., adherence to COVID-19 prevention measures, vaccine intentions) across three time points and employed multiverse-style analyses to examine how 512 combinations of demographic covariates (e.g., sex, age, education, income, ethnicity) impacted sampling discrepancies on these outcomes. Significant discrepancies emerged between samples on 73% of outcomes. Participants in the convenience samples held more positive thoughts towards and engaged in more COVID-19 prevention behaviours. Covariates attenuated sampling differences in only 55% of cases and increased differences in 45%. No covariate performed reliably well. Our results suggest that online convenience samples may display more positive dispositions towards COVID-19 prevention behaviours being studied than would samples drawn using more representative means. Adjusting results for demographic covariates frequently increased rather than decreased bias, suggesting that researchers should be cautious when interpreting adjusted findings. Using multiverse-style analyses as extended sensitivity analyses is recommended.
KW - COVID-19
KW - Collider bias
KW - Covariate adjustment
KW - Multiverse analysis
KW - Sampling bias
KW - Selection bias
UR - http://www.scopus.com/inward/record.url?scp=85141539697&partnerID=8YFLogxK
U2 - 10.1007/s10654-022-00932-y
DO - 10.1007/s10654-022-00932-y
M3 - Article
C2 - 36335560
AN - SCOPUS:85141539697
SN - 0393-2990
VL - 37
SP - 1233
EP - 1250
JO - European Journal of Epidemiology
JF - European Journal of Epidemiology
IS - 12
ER -