TY - JOUR
T1 - HIV protease inhibitors enhance the efficacy of irradiation
AU - Cuneo, Kyle C.
AU - Tu, Tianxiang
AU - Geng, Ling
AU - Fu, Allie
AU - Hallahan, Dennis E.
AU - Willey, Christopher D.
PY - 2007/5/15
Y1 - 2007/5/15
N2 - Tumor vascular endothelium is rather resistant to the cytotoxic effects of radiation. The HIV protease inhibitors (HPI) amprenavir, nelfinavir, and saquinavir have previously been shown to sensitize tumor cells to the cytotoxic effects of radiation. Additionally, this class of drug has been shown to inhibit angiogenesis and tumor cell migration. Therefore, in the current study, we wanted to determine whether HPIs could enhance the effect of radiation on endothelial function. Our study shows that HPIs, particularly nelfinavir, significantly enhance radiation's effect on human umbilical vein endothelial cells (HUVEC) and tumor vascular endothelium. We show that pretreatment of HUVEC with nelfinavir results in enhanced cytotoxicity, including increased apoptosis, when combined with radiation. Moreover, using several functional assays, we show that combination treatment effectively blocks endothelial cell migration and organization. These findings were accompanied by attenuation of Akt phosphorylation, a known pathway for radioresistance. Last, in vivo analysis of tumor microvasculature destruction showed a more than additive effect for nelfinavir and radiation. This study shows that HPIs can enhance the effect of ionizing radiation on vascular endothelium. Therefore, the Food and Drug Administration-approved drug, nelfinavir, may be an effective radiosensitizer in the clinic.
AB - Tumor vascular endothelium is rather resistant to the cytotoxic effects of radiation. The HIV protease inhibitors (HPI) amprenavir, nelfinavir, and saquinavir have previously been shown to sensitize tumor cells to the cytotoxic effects of radiation. Additionally, this class of drug has been shown to inhibit angiogenesis and tumor cell migration. Therefore, in the current study, we wanted to determine whether HPIs could enhance the effect of radiation on endothelial function. Our study shows that HPIs, particularly nelfinavir, significantly enhance radiation's effect on human umbilical vein endothelial cells (HUVEC) and tumor vascular endothelium. We show that pretreatment of HUVEC with nelfinavir results in enhanced cytotoxicity, including increased apoptosis, when combined with radiation. Moreover, using several functional assays, we show that combination treatment effectively blocks endothelial cell migration and organization. These findings were accompanied by attenuation of Akt phosphorylation, a known pathway for radioresistance. Last, in vivo analysis of tumor microvasculature destruction showed a more than additive effect for nelfinavir and radiation. This study shows that HPIs can enhance the effect of ionizing radiation on vascular endothelium. Therefore, the Food and Drug Administration-approved drug, nelfinavir, may be an effective radiosensitizer in the clinic.
UR - http://www.scopus.com/inward/record.url?scp=34250343665&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-06-3684
DO - 10.1158/0008-5472.CAN-06-3684
M3 - Article
C2 - 17510418
AN - SCOPUS:34250343665
SN - 0008-5472
VL - 67
SP - 4886
EP - 4893
JO - Cancer research
JF - Cancer research
IS - 10
ER -