TY - JOUR
T1 - Histamine-1 receptor is not required as a downstream effector of orexin-2 receptor in maintenance of basal sleep/wake states
AU - Hondo, M.
AU - Nagai, K.
AU - Ohno, K.
AU - Kisanuki, Y.
AU - Willie, J. T.
AU - Watanabe, T.
AU - Yanagisawa, M.
AU - Sakurai, T.
PY - 2010/3
Y1 - 2010/3
N2 - Aim: The effect of orexin on wakefulness has been suggested to be largely mediated by activation of histaminergic neurones in the tuberomammillary nucleus (TMN) via orexin receptor-2 (OX2R). However, orexin receptors in other regions of the brain might also play important roles in maintenance of wakefulness. To dissect the role of the histaminergic system as a downstream mediator of the orexin system in the regulation of sleep/wake states without compensation by the orexin receptor-1 (OX1R) mediated pathways, we analysed the phenotype of Histamine-1 receptor (H1R) and OX 1R double-deficient (H1R-/-;OX 1R-/-) mice. These mice lack OX1R-mediated pathways in addition to deficiency of H1R, which is thought to be the most important system in downstream of OX2R. Methods: We used H 1R deficient (H1R-/-) mice, H1R -/-;OX1R-/- mice, OX1R and OX 2R double-deficient (OX1R-/-;OX 2R-/-) mice, and wild type controls. Rapid eye movement (REM) sleep, non-REM (NREM) sleep and awake states were determined by polygraphic electroencephalographic/electromyographic recording. Results: No abnormality in sleep/wake states was observed in H1R-/- mice, consistent with previous studies. H1R-/-;OX 1R-/- mice also showed a sleep/wake phenotype comparable to that of wild type mice, while OX1R-/-; OX 2R-/- mice showed severe fragmentation of sleep/wake states. Conclusion: Our observations showed that regulation of the sleep/wake states is completely achieved by OX2R-expressing neurones without involving H1R-mediated pathways. The maintenance of basal physiological sleep/wake states is fully achieved without both H1 and OX1 receptors. Downstream pathways of OX2R other than the histaminergic system might play an important role in the maintenance of sleep/wake states.
AB - Aim: The effect of orexin on wakefulness has been suggested to be largely mediated by activation of histaminergic neurones in the tuberomammillary nucleus (TMN) via orexin receptor-2 (OX2R). However, orexin receptors in other regions of the brain might also play important roles in maintenance of wakefulness. To dissect the role of the histaminergic system as a downstream mediator of the orexin system in the regulation of sleep/wake states without compensation by the orexin receptor-1 (OX1R) mediated pathways, we analysed the phenotype of Histamine-1 receptor (H1R) and OX 1R double-deficient (H1R-/-;OX 1R-/-) mice. These mice lack OX1R-mediated pathways in addition to deficiency of H1R, which is thought to be the most important system in downstream of OX2R. Methods: We used H 1R deficient (H1R-/-) mice, H1R -/-;OX1R-/- mice, OX1R and OX 2R double-deficient (OX1R-/-;OX 2R-/-) mice, and wild type controls. Rapid eye movement (REM) sleep, non-REM (NREM) sleep and awake states were determined by polygraphic electroencephalographic/electromyographic recording. Results: No abnormality in sleep/wake states was observed in H1R-/- mice, consistent with previous studies. H1R-/-;OX 1R-/- mice also showed a sleep/wake phenotype comparable to that of wild type mice, while OX1R-/-; OX 2R-/- mice showed severe fragmentation of sleep/wake states. Conclusion: Our observations showed that regulation of the sleep/wake states is completely achieved by OX2R-expressing neurones without involving H1R-mediated pathways. The maintenance of basal physiological sleep/wake states is fully achieved without both H1 and OX1 receptors. Downstream pathways of OX2R other than the histaminergic system might play an important role in the maintenance of sleep/wake states.
KW - Electroencephalography
KW - Histamine H receptor
KW - Orexin receptor-1
KW - Orexin receptor-2
KW - Sleep/wake states
KW - Tuberomammillary nucleus
UR - http://www.scopus.com/inward/record.url?scp=75749126518&partnerID=8YFLogxK
U2 - 10.1111/j.1748-1716.2009.02032.x
DO - 10.1111/j.1748-1716.2009.02032.x
M3 - Article
C2 - 19694625
AN - SCOPUS:75749126518
SN - 1748-1708
VL - 198
SP - 287
EP - 294
JO - Acta Physiologica
JF - Acta Physiologica
IS - 3
ER -