TY - JOUR
T1 - HiMAL
T2 - Multimodal Hierarchical Multi-task Auxiliary Learning framework for predicting Alzheimer's disease progression
AU - Kumar, Sayantan
AU - Yu, Sean C.
AU - Michelson, Andrew
AU - Kannampallil, Thomas
AU - Payne, Philip
N1 - Publisher Copyright:
© 2024 The Author(s).
PY - 2024/10/1
Y1 - 2024/10/1
N2 - Objective: We aimed to develop and validate a novel multimodal framework Hierarchical Multi-task Auxiliary Learning (HiMAL) framework, for predicting cognitive composite functions as auxiliary tasks that estimate the longitudinal risk of transition from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Materials and Methods: HiMAL utilized multimodal longitudinal visit data including imaging features, cognitive assessment scores, and clinical variables from MCI patients in the Alzheimer's Disease Neuroimaging Initiative dataset, to predict at each visit if an MCI patient will progress to AD within the next 6 months. Performance of HiMAL was compared with state-of-the-art single-task and multitask baselines using area under the receiver operator curve (AUROC) and precision recall curve (AUPRC) metrics. An ablation study was performed to assess the impact of each input modality on model performance. Additionally, longitudinal explanations regarding risk of disease progression were provided to interpret the predicted cognitive decline. Results: Out of 634 MCI patients (mean [IQR] age: 72.8 [67-78], 60% male), 209 (32%) progressed to AD. HiMAL showed better prediction performance compared to all state-of-the-art longitudinal single-modality singe-task baselines (AUROC = 0.923 [0.915-0.937]; AUPRC = 0.623 [0.605-0.644]; all P <. 05). Ablation analysis highlighted that imaging and cognition scores with maximum contribution towards prediction of disease progression. Discussion: Clinically informative model explanations anticipate cognitive decline 6 months in advance, aiding clinicians in future disease progression assessment. HiMAL relies on routinely collected electronic health records (EHR) variables for proximal (6 months) prediction of AD onset, indicating its translational potential for point-of-care monitoring and managing of high-risk patients.
AB - Objective: We aimed to develop and validate a novel multimodal framework Hierarchical Multi-task Auxiliary Learning (HiMAL) framework, for predicting cognitive composite functions as auxiliary tasks that estimate the longitudinal risk of transition from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Materials and Methods: HiMAL utilized multimodal longitudinal visit data including imaging features, cognitive assessment scores, and clinical variables from MCI patients in the Alzheimer's Disease Neuroimaging Initiative dataset, to predict at each visit if an MCI patient will progress to AD within the next 6 months. Performance of HiMAL was compared with state-of-the-art single-task and multitask baselines using area under the receiver operator curve (AUROC) and precision recall curve (AUPRC) metrics. An ablation study was performed to assess the impact of each input modality on model performance. Additionally, longitudinal explanations regarding risk of disease progression were provided to interpret the predicted cognitive decline. Results: Out of 634 MCI patients (mean [IQR] age: 72.8 [67-78], 60% male), 209 (32%) progressed to AD. HiMAL showed better prediction performance compared to all state-of-the-art longitudinal single-modality singe-task baselines (AUROC = 0.923 [0.915-0.937]; AUPRC = 0.623 [0.605-0.644]; all P <. 05). Ablation analysis highlighted that imaging and cognition scores with maximum contribution towards prediction of disease progression. Discussion: Clinically informative model explanations anticipate cognitive decline 6 months in advance, aiding clinicians in future disease progression assessment. HiMAL relies on routinely collected electronic health records (EHR) variables for proximal (6 months) prediction of AD onset, indicating its translational potential for point-of-care monitoring and managing of high-risk patients.
KW - Alzheimer's disease progression
KW - hierarchical
KW - model explainability
KW - multimodal
KW - multitask auxiliary learning
UR - http://www.scopus.com/inward/record.url?scp=85204631347&partnerID=8YFLogxK
U2 - 10.1093/jamiaopen/ooae087
DO - 10.1093/jamiaopen/ooae087
M3 - Article
C2 - 39297151
AN - SCOPUS:85204631347
SN - 2574-2531
VL - 7
JO - JAMIA Open
JF - JAMIA Open
IS - 3
M1 - ooae087
ER -