Secreted proteins mediate essential physiological processes. With conventional assays, it is challenging to map the spatial distribution of proteins secreted by single cells, to study cell-to-cell heterogeneity in secretion, or to detect proteins of low abundance or incipient secretion. Here, we introduce the “FluoroDOT assay,” which uses an ultrabright nanoparticle plasmonic-fluor that enables high-resolution imaging of protein secretion. We find that plasmonic-fluors are 16,000-fold brighter, with nearly 30-fold higher signal-to-noise compared with conventional fluorescence labels. We demonstrate high-resolution imaging of different secreted cytokines in the single-plexed and spectrally multiplexed FluoroDOT assay that revealed cellular heterogeneity in secretion of multiple proteins simultaneously. Using diverse biochemical stimuli, including Mycobacterium tuberculosis infection, and a variety of immune cells such as macrophages, dendritic cells (DCs), and DC-T cell co-culture, we demonstrate that the assay is versatile, facile, and widely adaptable for enhancing biological understanding of spatial and temporal dynamics of single-cell secretome.

Original languageEnglish
Article number100267
JournalCell Reports Methods
Issue number8
StatePublished - Aug 22 2022


  • Interleukin-1 beta
  • Tumor Necrosis Factor-alpha
  • cytokine secretion
  • fluorescence imaging
  • plasmonic nanoparticles
  • single-cell secretion
  • tuberculosis


Dive into the research topics of 'High-resolution imaging of protein secretion at the single-cell level using plasmon-enhanced FluoroDOT assay'. Together they form a unique fingerprint.

Cite this