TY - JOUR
T1 - High Dose M-CSF Partially Rescues the Dap12-/- Osteoclast Phenotype
AU - Faccio, Roberta
AU - Zou, Wei
AU - Colaianni, Graziana
AU - Teitelbaum, Steven L.
AU - Ross, F. Patrick
PY - 2003/12/1
Y1 - 2003/12/1
N2 - Osteoclasts are macrophage derived cells and as such are subject to regulation by molecules impacting other members of the immune system. Dap12 is an adaptor protein expressed by NK cells and B and T lymphocytes. Dap12 also mediates maturation of myeloid cells and is expressed by osteoclasts which are dysfunctional in its absence. We find Dap12-/- osteoclast precursors fail to differentiate, in vitro, and the abnormality is partially rescued by high dose M-CSF. The relative paucity of osteoclast number, even in presence of high dose cytokine, is attended by dampened proliferation of precursor cells and their failure to normally migrate towards the osteoclast-recognized matrix protein, osteopontin. Furthermore, Dap12-/- osteoclasts generated in high dose M-CSF fail to normally organize their cytoskeleton. The incapacity of Dap12 null cells to undergo normal osteoclast differentiation is not due to blunted stimulation of major RANK ligand (RANKL) or M-CSF induced signaling pathways. On the other hand, when plated on osteopontin, Dap12-/- pre-osteoclasts do not activate the tyrosine kinase, Syk, which normally binds to the adaptor protein and transmits downstream signals. Attesting to the importance of the Dap12/Syk complex, Syk deficient macrophages do not undergo normal osteoclastogenesis. Furthermore, the same cells plated onto osteopontin, adhere poorly and fail to phosphorylate c-Src or Pyk2, two kinases central to organization of the osteoclast cytoskeleton.
AB - Osteoclasts are macrophage derived cells and as such are subject to regulation by molecules impacting other members of the immune system. Dap12 is an adaptor protein expressed by NK cells and B and T lymphocytes. Dap12 also mediates maturation of myeloid cells and is expressed by osteoclasts which are dysfunctional in its absence. We find Dap12-/- osteoclast precursors fail to differentiate, in vitro, and the abnormality is partially rescued by high dose M-CSF. The relative paucity of osteoclast number, even in presence of high dose cytokine, is attended by dampened proliferation of precursor cells and their failure to normally migrate towards the osteoclast-recognized matrix protein, osteopontin. Furthermore, Dap12-/- osteoclasts generated in high dose M-CSF fail to normally organize their cytoskeleton. The incapacity of Dap12 null cells to undergo normal osteoclast differentiation is not due to blunted stimulation of major RANK ligand (RANKL) or M-CSF induced signaling pathways. On the other hand, when plated on osteopontin, Dap12-/- pre-osteoclasts do not activate the tyrosine kinase, Syk, which normally binds to the adaptor protein and transmits downstream signals. Attesting to the importance of the Dap12/Syk complex, Syk deficient macrophages do not undergo normal osteoclastogenesis. Furthermore, the same cells plated onto osteopontin, adhere poorly and fail to phosphorylate c-Src or Pyk2, two kinases central to organization of the osteoclast cytoskeleton.
KW - Bone
KW - Dap12
KW - M-CSF
KW - Osteoclasts
KW - Syk
UR - http://www.scopus.com/inward/record.url?scp=0345448261&partnerID=8YFLogxK
U2 - 10.1002/jcb.10694
DO - 10.1002/jcb.10694
M3 - Article
C2 - 14624447
AN - SCOPUS:0345448261
VL - 90
SP - 871
EP - 883
JO - Journal of Cellular Biochemistry
JF - Journal of Cellular Biochemistry
SN - 0730-2312
IS - 5
ER -