TY - GEN
T1 - High-density surface EMG decomposition allows for recording of motor unit discharge from proximal and distal flexion synergy muscles simultaneously in individuals with stroke
AU - Miller, Laura C.
AU - Thompson, Christopher K.
AU - Negro, Francesco
AU - Heckman, C. J.
AU - Farina, Dario
AU - Dewald, Julius P.A.
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2014/11/2
Y1 - 2014/11/2
N2 - Analysis of motor unit discharge can provide insight into the neural control of movement in healthy and pathological states, but it is typically completed in one muscle at a time. For some research investigations, it would be advantageous to study motor unit discharge from multiple muscles simultaneously. One such example is investigation of the flexion synergy, an abnormal muscle co-activation pattern in post-stroke individuals in which activation of shoulder abductors is involuntarily coupled with that of elbow and finger flexors. However, limitations in available technology have hindered the ability to efficiently extract motor unit discharge from multiple muscles simultaneously. In this study, we propose the use of high-density surface EMG decomposition from proximal and distal flexion synergy muscles (deltoid, biceps, wrist/finger flexors) in combination with an isometric joint torque recording device in individuals with chronic stroke. This innovative approach provides the ability to efficiently analyze both motor units and joint torques that have been simultaneously recorded from the shoulder, elbow, and fingers. In preliminary experiments, 3 stroke and 5 control participants generated shoulder abduction, elbow flexion, and finger flexion torques at 10, 20, 30 and 40% of maximum torque. Motor unit spike trains could be extracted from all muscles at each torque level. Mean motor unit firing rates were significantly lower in the stroke group than in the control group for all three muscles. Within the stroke group, wrist/finger flexor motor units had the lowest coefficient of variation. Additionally, modulation of mean firing rates across torque levels was significantly impaired in all three paretic muscles. The implications of these findings and overall impact of this approach are discussed.
AB - Analysis of motor unit discharge can provide insight into the neural control of movement in healthy and pathological states, but it is typically completed in one muscle at a time. For some research investigations, it would be advantageous to study motor unit discharge from multiple muscles simultaneously. One such example is investigation of the flexion synergy, an abnormal muscle co-activation pattern in post-stroke individuals in which activation of shoulder abductors is involuntarily coupled with that of elbow and finger flexors. However, limitations in available technology have hindered the ability to efficiently extract motor unit discharge from multiple muscles simultaneously. In this study, we propose the use of high-density surface EMG decomposition from proximal and distal flexion synergy muscles (deltoid, biceps, wrist/finger flexors) in combination with an isometric joint torque recording device in individuals with chronic stroke. This innovative approach provides the ability to efficiently analyze both motor units and joint torques that have been simultaneously recorded from the shoulder, elbow, and fingers. In preliminary experiments, 3 stroke and 5 control participants generated shoulder abduction, elbow flexion, and finger flexion torques at 10, 20, 30 and 40% of maximum torque. Motor unit spike trains could be extracted from all muscles at each torque level. Mean motor unit firing rates were significantly lower in the stroke group than in the control group for all three muscles. Within the stroke group, wrist/finger flexor motor units had the lowest coefficient of variation. Additionally, modulation of mean firing rates across torque levels was significantly impaired in all three paretic muscles. The implications of these findings and overall impact of this approach are discussed.
UR - http://www.scopus.com/inward/record.url?scp=84929484118&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2014.6944832
DO - 10.1109/EMBC.2014.6944832
M3 - Conference contribution
C2 - 25571200
AN - SCOPUS:84929484118
T3 - 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
SP - 5340
EP - 5344
BT - 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Y2 - 26 August 2014 through 30 August 2014
ER -