TY - GEN
T1 - Hierachical spherical harmonics based deformable HARDI registration
AU - Yap, Pew Thian
AU - Chen, Yasheng
AU - An, Hongyu
AU - Gilmore, John H.
AU - Lin, Weili
AU - Shen, Dinggang
PY - 2010
Y1 - 2010
N2 - In contrast to the more common Diffusion Tensor Imaging (DTI), High Angular Resolution Diffusion Imaging (HARDI) allows superior delineation of angular microstructures of brain white matter, and makes possible multiple-fiber modeling of each voxel for better characterization of brain connectivity. However, in the context of image registration, the question of how much information is needed for satisfactory alignment remains unanswered. Low order representation of the diffusivity information is generally more robust than the higher order representation, but the latter gives more information for correct fiber tract alignment. However, higher order representation, when naïvely utilized, might not necessarily be conducive to improving registration accuracy since similar structures with significant orientation differences prior to proper alignment might be mistakenly taken as non-matching structures. We propose in this paper a hierarchical spherical harmonics based registration algorithm which utilizes the wealth of information provided by HARDI in a more principled means. The image volumes are first registered using robust, relatively direction invariant features derived from the diffusion-attenuation profile, and their alignment is then refined using spherical harmonic (SH) representation of gradually increasing order. This progression of SH representation from non-directional, single-directional to multi-directional representation provides a systematic means of extracting directional information from the HARDI data. Experimental results show a significant increase in registration accuracy over a state-of-the-art DTI registration algorithm.
AB - In contrast to the more common Diffusion Tensor Imaging (DTI), High Angular Resolution Diffusion Imaging (HARDI) allows superior delineation of angular microstructures of brain white matter, and makes possible multiple-fiber modeling of each voxel for better characterization of brain connectivity. However, in the context of image registration, the question of how much information is needed for satisfactory alignment remains unanswered. Low order representation of the diffusivity information is generally more robust than the higher order representation, but the latter gives more information for correct fiber tract alignment. However, higher order representation, when naïvely utilized, might not necessarily be conducive to improving registration accuracy since similar structures with significant orientation differences prior to proper alignment might be mistakenly taken as non-matching structures. We propose in this paper a hierarchical spherical harmonics based registration algorithm which utilizes the wealth of information provided by HARDI in a more principled means. The image volumes are first registered using robust, relatively direction invariant features derived from the diffusion-attenuation profile, and their alignment is then refined using spherical harmonic (SH) representation of gradually increasing order. This progression of SH representation from non-directional, single-directional to multi-directional representation provides a systematic means of extracting directional information from the HARDI data. Experimental results show a significant increase in registration accuracy over a state-of-the-art DTI registration algorithm.
UR - http://www.scopus.com/inward/record.url?scp=78049421771&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-15699-1_24
DO - 10.1007/978-3-642-15699-1_24
M3 - Conference contribution
AN - SCOPUS:78049421771
SN - 3642156983
SN - 9783642156984
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 228
EP - 236
BT - Medical Imaging and Augmented Reality - 5th International Workshop, MIAR 2010, Proceedings
T2 - 5th International Workshop on Medical Imaging and Augmented Reality, MIAR 2010
Y2 - 19 September 2010 through 20 September 2010
ER -