TY - JOUR
T1 - Heterologous Prion Interactions Are Altered by Mutations in the Prion Protein Rnq1p
AU - Bardill, J. Patrick
AU - True, Heather L.
N1 - Funding Information:
The authors would like to thank J. R. Fisher for technical support and members of the True laboratory and Dr. Jeff Moore for helpful discussions and critical reading of the manuscript. We thank Dr. Susan Liebman for providing strains and Dr. Susan Lindquist for providing the anti-Rnq1p antibody. This research was supported by National Institutes of Health grant GM072228 (H.L.T.).
PY - 2009/5/8
Y1 - 2009/5/8
N2 - Prions in the yeast Saccharomyces cerevisiae show a surprising degree of interdependence. Specifically, the rate of appearance of the [PSI+] prion, which is thought to be an important mechanism to respond to changing environmental conditions, is greatly increased by another prion, [RNQ+]. While the domains of the Rnq1 protein important for formation of the [RNQ+] prion have been defined, the specific residues required remain unknown. Furthermore, residues in Rnq1p that mediate the interaction between [PSI+] and [RNQ+] are unknown. To identify residues important for prion protein interactions, we created a mutant library of Rnq1p clones in the context of a chimera that serves as proxy for [RNQ+] aggregates. Several of the mutant Rnq1p proteins showed structural differences in the aggregates they formed, as revealed by semi-denaturing detergent agarose gel electrophoresis. Additionally, several of the mutants showed a striking defect in the ability to promote [PSI+] induction. These data indicate that the mutants formed strain variants of [RNQ+]. By dissecting the mutations in the isolated clones, we found five single mutations that caused [PSI+] induction defects, S223P, F184S, Q239R, N297S, and Q298R. These are the first specific mutations characterized in Rnq1p that alter [PSI+] induction. Additionally, we have identified a region important for the propagation of certain strain variants of [RNQ+]. Deletion of this region (amino acids 284-317) affected propagation of the high variant but not medium or low [RNQ+] strain variants. Furthermore, when the low [RNQ+] strain variant was propagated by Δ284-317, [PSI+] induction was greatly increased. These data suggest that this region is important in defining the structure of the [RNQ+] strain variants. These data are consistent with a model of [PSI+] induction caused by physical interactions between Rnq1p and Sup35p.
AB - Prions in the yeast Saccharomyces cerevisiae show a surprising degree of interdependence. Specifically, the rate of appearance of the [PSI+] prion, which is thought to be an important mechanism to respond to changing environmental conditions, is greatly increased by another prion, [RNQ+]. While the domains of the Rnq1 protein important for formation of the [RNQ+] prion have been defined, the specific residues required remain unknown. Furthermore, residues in Rnq1p that mediate the interaction between [PSI+] and [RNQ+] are unknown. To identify residues important for prion protein interactions, we created a mutant library of Rnq1p clones in the context of a chimera that serves as proxy for [RNQ+] aggregates. Several of the mutant Rnq1p proteins showed structural differences in the aggregates they formed, as revealed by semi-denaturing detergent agarose gel electrophoresis. Additionally, several of the mutants showed a striking defect in the ability to promote [PSI+] induction. These data indicate that the mutants formed strain variants of [RNQ+]. By dissecting the mutations in the isolated clones, we found five single mutations that caused [PSI+] induction defects, S223P, F184S, Q239R, N297S, and Q298R. These are the first specific mutations characterized in Rnq1p that alter [PSI+] induction. Additionally, we have identified a region important for the propagation of certain strain variants of [RNQ+]. Deletion of this region (amino acids 284-317) affected propagation of the high variant but not medium or low [RNQ+] strain variants. Furthermore, when the low [RNQ+] strain variant was propagated by Δ284-317, [PSI+] induction was greatly increased. These data suggest that this region is important in defining the structure of the [RNQ+] strain variants. These data are consistent with a model of [PSI+] induction caused by physical interactions between Rnq1p and Sup35p.
KW - Rnq1p
KW - mutagenesis
KW - prions
KW - protein interaction
KW - yeast
UR - http://www.scopus.com/inward/record.url?scp=64649107312&partnerID=8YFLogxK
U2 - 10.1016/j.jmb.2009.03.036
DO - 10.1016/j.jmb.2009.03.036
M3 - Article
C2 - 19324054
AN - SCOPUS:64649107312
SN - 0022-2836
VL - 388
SP - 583
EP - 596
JO - Journal of Molecular Biology
JF - Journal of Molecular Biology
IS - 3
ER -