TY - JOUR
T1 - Heme oxygenase-2 localizes to mitochondria and regulates hypoxic responses in hepatocytes
AU - Waltz, Paul K.
AU - Kautza, Benjamin
AU - Luciano, Jason
AU - Dyer, Mitch
AU - Stolz, Donna Beer
AU - Loughran, Patricia
AU - Neal, Matthew D.
AU - Sperry, Jason L.
AU - Rosengart, Matthew R.
AU - Zuckerbraun, Brian S.
N1 - Publisher Copyright:
Copyright © 2018 Paul K. Waltz et al.
PY - 2018
Y1 - 2018
N2 - Hypoxia occurs as a part of multiple disease states, including hemorrhagic shock. Adaptive responses occur within the cell to limit the consequences of hypoxia. This includes changes in mitochondrial respiration, stress-induced cell signaling, and gene expression that is regulated by hypoxia inducible factor-1α (HIF-1α). Heme oxygenase-2 (HO-2) has been shown to be involved in oxygen sensing in several cell types. The purpose of these experiments was to test the hypothesis that HO-2 is a critical regulator of mitochondrial oxygen consumption and reactive oxygen species (ROS) production to influence hypoxia-adaptive responses such as HIF-1α protein levels and JNK signaling. Methods and Results. In vitro studies were performed in primary mouse hepatocytes. HO-2, but not HO-1, was expressed in mitochondria at baseline. Decreased oxygen consumption and increased mitochondrial ROS production in response to hypoxia were dependent upon HO-2 expression. HO-2 expression regulated HIF-1α and JNK signaling in a mitochondrial ROS-dependent manner. Furthermore, knockdown of HO-2 led to increased organ damage, systemic inflammation, tissue hypoxia, and shock in a murine model of hemorrhage and resuscitation. Conclusion. HO-2 signaling plays a role in hypoxic signaling and hemorrhagic shock. This pathway may be able to be harnessed for therapeutic effects.
AB - Hypoxia occurs as a part of multiple disease states, including hemorrhagic shock. Adaptive responses occur within the cell to limit the consequences of hypoxia. This includes changes in mitochondrial respiration, stress-induced cell signaling, and gene expression that is regulated by hypoxia inducible factor-1α (HIF-1α). Heme oxygenase-2 (HO-2) has been shown to be involved in oxygen sensing in several cell types. The purpose of these experiments was to test the hypothesis that HO-2 is a critical regulator of mitochondrial oxygen consumption and reactive oxygen species (ROS) production to influence hypoxia-adaptive responses such as HIF-1α protein levels and JNK signaling. Methods and Results. In vitro studies were performed in primary mouse hepatocytes. HO-2, but not HO-1, was expressed in mitochondria at baseline. Decreased oxygen consumption and increased mitochondrial ROS production in response to hypoxia were dependent upon HO-2 expression. HO-2 expression regulated HIF-1α and JNK signaling in a mitochondrial ROS-dependent manner. Furthermore, knockdown of HO-2 led to increased organ damage, systemic inflammation, tissue hypoxia, and shock in a murine model of hemorrhage and resuscitation. Conclusion. HO-2 signaling plays a role in hypoxic signaling and hemorrhagic shock. This pathway may be able to be harnessed for therapeutic effects.
UR - http://www.scopus.com/inward/record.url?scp=85054740598&partnerID=8YFLogxK
U2 - 10.1155/2018/2021645
DO - 10.1155/2018/2021645
M3 - Article
C2 - 29849867
AN - SCOPUS:85054740598
SN - 1942-0900
VL - 2018
JO - Oxidative Medicine and Cellular Longevity
JF - Oxidative Medicine and Cellular Longevity
M1 - 2021645
ER -