Graph convolutional networks meet markov random fields: Semi-supervised community detection in attribute networks

Di Jin, Ziyang Liu, Weihao Li, Dongxiao He, Weixiong Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

103 Scopus citations

Abstract

Community detection is a fundamental problem in network science with various applications. The problem has attracted much attention and many approaches have been proposed. Among the existing approaches are the latest methods based on Graph Convolutional Networks (GCN) and on statistical modeling of Markov Random Fields (MRF). Here, we propose to integrate the techniques of GCN and MRF to solve the problem of semi-supervised community detection in attributed networks with semantic information. Our new method takes advantage of salient features of GNN and MRF and exploits both network topology and node semantic information in a complete end-to-end deep network architecture. Our extensive experiments demonstrate the superior performance of the new method over state-of-the-art methods and its scalability on several large benchmark problems.

Original languageEnglish
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI press
Pages152-159
Number of pages8
ISBN (Electronic)9781577358091
StatePublished - 2019
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: Jan 27 2019Feb 1 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Country/TerritoryUnited States
CityHonolulu
Period01/27/1902/1/19

Fingerprint

Dive into the research topics of 'Graph convolutional networks meet markov random fields: Semi-supervised community detection in attribute networks'. Together they form a unique fingerprint.

Cite this