TY - GEN
T1 - Graph convolutional networks meet markov random fields
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
AU - Jin, Di
AU - Liu, Ziyang
AU - Li, Weihao
AU - He, Dongxiao
AU - Zhang, Weixiong
N1 - Funding Information:
This work was supported by National Key R&D Program of China (2017YFB1401201), Natural Science Foundation of China (61876128, 61772361, 61502334, U1736103).
Publisher Copyright:
© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2019
Y1 - 2019
N2 - Community detection is a fundamental problem in network science with various applications. The problem has attracted much attention and many approaches have been proposed. Among the existing approaches are the latest methods based on Graph Convolutional Networks (GCN) and on statistical modeling of Markov Random Fields (MRF). Here, we propose to integrate the techniques of GCN and MRF to solve the problem of semi-supervised community detection in attributed networks with semantic information. Our new method takes advantage of salient features of GNN and MRF and exploits both network topology and node semantic information in a complete end-to-end deep network architecture. Our extensive experiments demonstrate the superior performance of the new method over state-of-the-art methods and its scalability on several large benchmark problems.
AB - Community detection is a fundamental problem in network science with various applications. The problem has attracted much attention and many approaches have been proposed. Among the existing approaches are the latest methods based on Graph Convolutional Networks (GCN) and on statistical modeling of Markov Random Fields (MRF). Here, we propose to integrate the techniques of GCN and MRF to solve the problem of semi-supervised community detection in attributed networks with semantic information. Our new method takes advantage of salient features of GNN and MRF and exploits both network topology and node semantic information in a complete end-to-end deep network architecture. Our extensive experiments demonstrate the superior performance of the new method over state-of-the-art methods and its scalability on several large benchmark problems.
UR - http://www.scopus.com/inward/record.url?scp=85075804564&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85075804564
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 152
EP - 159
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - AAAI press
Y2 - 27 January 2019 through 1 February 2019
ER -