TY - JOUR
T1 - Gpr126/Adgrg6 contributes to the terminal Schwann cell response at the neuromuscular junction following peripheral nerve injury
AU - Jablonka-Shariff, Albina
AU - Lu, Chuieng Yi
AU - Campbell, Katherine
AU - Monk, Kelly R.
AU - Snyder-Warwick, Alison K.
N1 - Publisher Copyright:
© 2019 Wiley Periodicals, Inc.
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Gpr126/Adgrg6 is an adhesion G protein-coupled receptor essential for Schwann cell (SC) myelination with important contributions to repair after nerve crush injury. Despite critical functions in myelinating SCs, the role of Gpr126 within nonmyelinating terminal Schwann cells (tSCs) at the neuromuscular junction (NMJ), is not known. tSCs have important functions in synaptic maintenance and reinnervation, and after injury tSCs extend cytoplasmic processes to guide regenerating axons to the denervated NMJ. In this study, we show that Gpr126 is expressed in tSCs, and that absence of Gpr126 in SCs (SC-specific Gpr126 knockout, cGpr126) results in a NMJ maintenance defect in the hindlimbs of aged mice, but not in young adult mice. After nerve transection and repair, cGpr126 mice display delayed NMJ reinnervation, altered tSC morphology with decreased S100β expression, and reduced tSC cytoplasmic process extensions. The immune response promoting reinnervation at the NMJ following nerve injury is also altered with decreased macrophage infiltration, Tnfα, and anomalous cytokine expression compared to NMJs of control mice. In addition, Vegfa expression is decreased in muscle, suggesting that cGpr126 non-cell autonomously modulates angiogenesis after nerve injury. In sum, cGpr126 mice demonstrated delayed NMJ reinnervation and decreased muscle mass following nerve transection and repair compared to control littermates. The integral function of Gpr126 in tSCs at the NMJ provides the framework for new therapeutic targets for neuromuscular disease.
AB - Gpr126/Adgrg6 is an adhesion G protein-coupled receptor essential for Schwann cell (SC) myelination with important contributions to repair after nerve crush injury. Despite critical functions in myelinating SCs, the role of Gpr126 within nonmyelinating terminal Schwann cells (tSCs) at the neuromuscular junction (NMJ), is not known. tSCs have important functions in synaptic maintenance and reinnervation, and after injury tSCs extend cytoplasmic processes to guide regenerating axons to the denervated NMJ. In this study, we show that Gpr126 is expressed in tSCs, and that absence of Gpr126 in SCs (SC-specific Gpr126 knockout, cGpr126) results in a NMJ maintenance defect in the hindlimbs of aged mice, but not in young adult mice. After nerve transection and repair, cGpr126 mice display delayed NMJ reinnervation, altered tSC morphology with decreased S100β expression, and reduced tSC cytoplasmic process extensions. The immune response promoting reinnervation at the NMJ following nerve injury is also altered with decreased macrophage infiltration, Tnfα, and anomalous cytokine expression compared to NMJs of control mice. In addition, Vegfa expression is decreased in muscle, suggesting that cGpr126 non-cell autonomously modulates angiogenesis after nerve injury. In sum, cGpr126 mice demonstrated delayed NMJ reinnervation and decreased muscle mass following nerve transection and repair compared to control littermates. The integral function of Gpr126 in tSCs at the NMJ provides the framework for new therapeutic targets for neuromuscular disease.
KW - Gpr126
KW - NMJ
KW - nerve injury
KW - terminal Schwann cells
UR - http://www.scopus.com/inward/record.url?scp=85076889709&partnerID=8YFLogxK
U2 - 10.1002/glia.23769
DO - 10.1002/glia.23769
M3 - Article
C2 - 31873966
AN - SCOPUS:85076889709
SN - 0894-1491
VL - 68
SP - 1182
EP - 1200
JO - Glia
JF - Glia
IS - 6
ER -