GPIRT: A Gaussian process model for item response theory

J. Brandon Duck-Mayr, Roman Garnett, Jacob M. Montgomery

Research output: Contribution to conferencePaperpeer-review

4 Scopus citations

Abstract

The goal of item response theoretic (IRT) models is to provide estimates of latent traits from binary observed indicators and at the same time to learn the item response functions (IRFs) that map from latent trait to observed response. However, in many cases observed behavior can deviate significantly from the parametric assumptions of traditional IRT models. Nonparametric IRT models overcome these challenges by relaxing assumptions about the form of the IRFs, but standard tools are unable to simultaneously estimate flexible IRFs and recover ability estimates for respondents. We propose a Bayesian nonparametric model that solves this problem by placing Gaussian process priors on the latent functions defining the IRFs. This allows us to simultaneously relax assumptions about the shape of the IRFs while preserving the ability to estimate latent traits. This in turn allows us to easily extend the model to further tasks such as active learning. GPIRT therefore provides a simple and intuitive solution to several longstanding problems in the IRT literature.

Original languageEnglish
Pages520-529
Number of pages10
StatePublished - 2020
Event36th Conference on Uncertainty in Artificial Intelligence, UAI 2020 - Virtual, Online
Duration: Aug 3 2020Aug 6 2020

Conference

Conference36th Conference on Uncertainty in Artificial Intelligence, UAI 2020
CityVirtual, Online
Period08/3/2008/6/20

Fingerprint

Dive into the research topics of 'GPIRT: A Gaussian process model for item response theory'. Together they form a unique fingerprint.

Cite this