TY - JOUR
T1 - Glycan foraging in vivo by an intestine-adapted bacterial symbiont
AU - Sonnenburg, Justin L.
AU - Xu, Jian
AU - Leip, Douglas D.
AU - Chen, Chien Huan
AU - Westover, Benjamin P.
AU - Weatherford, Jeremy
AU - Buhler, Jeremy D.
AU - Gordon, Jeffrey I.
N1 - Funding Information:
We dedicate this manuscript to the memory of Pamela Sklar, whose guidance and wisdom we miss daily. We strive to continue her legacy of thoughtful, innovative, and collaborative science. Data were generated as part of the CommonMind Consortium supported by funding from Takeda Pharmaceuticals Company Limited, F. Hoffman-La Roche Ltd and NIH grants R01MH085542, R01MH093725, P50MH066392, P50MH080405, R01MH097276, RO1-MH-075916, P50M096891, P50MH084053S1, R37MH057881 and R37MH057881S1, HHSN271201300031C, AG02219, AG05138 and MH06692. Brain tissue for the study was obtained from the following brain bank collections: the Mount Sinai NIH Brain and Tissue Repository, the University of Pennsylvania Alzheimer’s Disease Core Center, the University of Pittsburgh NeuroBioBank and Brain and Tissue Repositories and the NIMH Human Brain Collection Core. CMC Leadership: P. Sklar, J. Buxbaum (Icahn School of Medicine at Mount Sinai), B. Devlin, D. Lewis (University of Pittsburgh), R. Gur, C.-G. Hahn (University of Pennsylvania), K. Hirai, H. Toyoshiba (Takeda Pharmaceuticals Company Limited), E. Domenici, L. Essioux (F. Hoffman-La Roche Ltd), L. Mangravite, M. Peters (Sage Bionetworks), T. Lehner, B. Lipska (NIMH). ROSMAP study data were provided by the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago. Data collection was supported through funding by NIA grants P30AG10161, R01AG15819, R01AG17917, R01AG30146, R01AG36836, U01AG32984, U01AG46152, the Illinois Department of Public Health, and the Translational Genomics Research Institute. The iPSYCH-GEMS team acknowledges funding from the Lundbeck Foundation (grant no. R102-A9118 and R155-2014-1724), the Stanley Medical Research Institute, an Advanced Grant from the European Research Council (project no. 294838), the Danish Strategic Research Council the Novo Nordisk Foundation for supporting the Danish National Biobank resource, and grants from Aarhus and Copenhagen Universities and University Hospitals, including support to the iSEQ Center, the GenomeDK HPC facility, and the CIRRAU Center. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained from the GTEx Portal on September 5, 2016. BrainSpan: Atlas of the Developing Human Brain (Internet). Funded by ARRA Awards 1RC2MH089921-01, 1RC2MH090047-01, and 1RC2MH089929-01. H.K.I. was supported by R01 MH107666-01.
PY - 2005/3/25
Y1 - 2005/3/25
N2 - Germ-free mice were maintained on polysaccharide-rich or simple-sugar diets and colonized for 10 days with an organism also found in human guts, Bacteroides thetaiotaomicron, followed by whole-genome transcriptional profiling of bacteria and mass spectrometry of cecal glycans. We found that these bacteria assembled on food particles and mucus, selectively induced outer-membrane polysaccharide-binding proteins and glycoside hydrolases, prioritized the consumption of liberated hexose sugars, and revealed a capacity to turn to host mucus glycans when polysaccharides were absent from the diet. This flexible foraging behavior should contribute to ecosystem stability and functional diversity.
AB - Germ-free mice were maintained on polysaccharide-rich or simple-sugar diets and colonized for 10 days with an organism also found in human guts, Bacteroides thetaiotaomicron, followed by whole-genome transcriptional profiling of bacteria and mass spectrometry of cecal glycans. We found that these bacteria assembled on food particles and mucus, selectively induced outer-membrane polysaccharide-binding proteins and glycoside hydrolases, prioritized the consumption of liberated hexose sugars, and revealed a capacity to turn to host mucus glycans when polysaccharides were absent from the diet. This flexible foraging behavior should contribute to ecosystem stability and functional diversity.
UR - http://www.scopus.com/inward/record.url?scp=15544376418&partnerID=8YFLogxK
U2 - 10.1126/science.1109051
DO - 10.1126/science.1109051
M3 - Article
C2 - 15790854
AN - SCOPUS:15544376418
SN - 0036-8075
VL - 307
SP - 1955
EP - 1959
JO - Science
JF - Science
IS - 5717
ER -