TY - JOUR
T1 - Glucuronidation of N-hydroxy metabolites of N-acetylbenzidine
AU - Babu, Satram R.
AU - Lakshmi, Vijaya M.
AU - Hsu, F. F.
AU - Zenser, Terry V.
AU - Davis, Bernard B.
N1 - Funding Information:
This work was supported by the Department of Veterans Affairs (TVZ and BBD). Mass spectrometry was performed at Washington University, St Louis, MO, in the Biomedical Mass Spectrometry Resource Center through NIH grants RR-00954 and AM-20579.
PY - 1995/12
Y1 - 1995/12
N2 - Glucuronidation of N-hydroxy arylamines is thought to be a necessary step in their initiation of bladder cancer. This was evaluated for the N-hydroxy metabolites of N-acetylbenzidine (ABZ). N'-Hydroxy-N-acetylbenzidine (N-HA), N-hydroxy-N-acetylbenzidine (N-HA) and N-hydroxy-N,N'-diacetylbenzidine (N-HDA) were synthesized. Except for N'-HA, these compounds were quite stable. Ascorbic acid and/or acidic pH increased the stability of N'-HA. When each N-hydroxy compound was added to reaction mixtures containing [14C]UDP-glucuronic acid, 3 mM ascorbic acid and human liver microsomes a new product was detected by HPLC. Emulgen 911 was a better detergent than Triton X-100 for expressing microsomal activity, with maximal glucuronidation observed with 0.3% Emulgen 911. At 0.125 mM amine the rate of glucuronidation was N-HDA >> N'-HA = benzidine > ABZ > N-HA. In contrast, at 0.5 mM amine the rate of glucuronidation of N-HA was only exceeded by N-HDA. At pH 5.5 and 37°C the t1/2 for the enzymatically prepared glucuronide conjugates of ABZ, N'-HA and N-HA were 7.5 min and 3.5 and 1.8 h respectively. For N-HDA >90% of this glucuronide remained after 24 h. At pH 7.4 and 37°C the t1/2 for the glucuronide conjugates of ABZ and N-HA were 2.3 and 2 h respectively, with the amounts remaining after 24 h for N'-HA and N-HDA being 75 and 90% respectively. At pH 6.5 the t1/2 for N'-HA was 14 h. Thus only glucuron-ides of ABZ and N'-HA exhibit pH-dependent changes in t1/2. Compared with ABZ, glucuronides the N-hydroxy metabolites are more stable at acidic pH. Acidic urine would be more likely to hydrolyze the glucuronide conjugate of ABZ than those of its N-hydroxy metabolites. Because these results are different from that hypothesized for arylmonoamines, a new model was developed to explain the role of N-oxidation, N-glucuronidation and N-acetylation in the carcinogenesis of benzidine, an aryldiamine.
AB - Glucuronidation of N-hydroxy arylamines is thought to be a necessary step in their initiation of bladder cancer. This was evaluated for the N-hydroxy metabolites of N-acetylbenzidine (ABZ). N'-Hydroxy-N-acetylbenzidine (N-HA), N-hydroxy-N-acetylbenzidine (N-HA) and N-hydroxy-N,N'-diacetylbenzidine (N-HDA) were synthesized. Except for N'-HA, these compounds were quite stable. Ascorbic acid and/or acidic pH increased the stability of N'-HA. When each N-hydroxy compound was added to reaction mixtures containing [14C]UDP-glucuronic acid, 3 mM ascorbic acid and human liver microsomes a new product was detected by HPLC. Emulgen 911 was a better detergent than Triton X-100 for expressing microsomal activity, with maximal glucuronidation observed with 0.3% Emulgen 911. At 0.125 mM amine the rate of glucuronidation was N-HDA >> N'-HA = benzidine > ABZ > N-HA. In contrast, at 0.5 mM amine the rate of glucuronidation of N-HA was only exceeded by N-HDA. At pH 5.5 and 37°C the t1/2 for the enzymatically prepared glucuronide conjugates of ABZ, N'-HA and N-HA were 7.5 min and 3.5 and 1.8 h respectively. For N-HDA >90% of this glucuronide remained after 24 h. At pH 7.4 and 37°C the t1/2 for the glucuronide conjugates of ABZ and N-HA were 2.3 and 2 h respectively, with the amounts remaining after 24 h for N'-HA and N-HDA being 75 and 90% respectively. At pH 6.5 the t1/2 for N'-HA was 14 h. Thus only glucuron-ides of ABZ and N'-HA exhibit pH-dependent changes in t1/2. Compared with ABZ, glucuronides the N-hydroxy metabolites are more stable at acidic pH. Acidic urine would be more likely to hydrolyze the glucuronide conjugate of ABZ than those of its N-hydroxy metabolites. Because these results are different from that hypothesized for arylmonoamines, a new model was developed to explain the role of N-oxidation, N-glucuronidation and N-acetylation in the carcinogenesis of benzidine, an aryldiamine.
UR - http://www.scopus.com/inward/record.url?scp=0029562366&partnerID=8YFLogxK
U2 - 10.1093/carcin/16.12.3069
DO - 10.1093/carcin/16.12.3069
M3 - Article
C2 - 8603487
AN - SCOPUS:0029562366
SN - 0143-3334
VL - 16
SP - 3069
EP - 3074
JO - Carcinogenesis
JF - Carcinogenesis
IS - 12
ER -